
MATLAB® Builder™ JA

User’s Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Builder™ JA User’s Guide

© COPYRIGHT 2006–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2006 Online only New for Version 1.0 (Release 2006b)
March 2007 Online only Revised for Version 1.1 (Release 2007a)
September 2007 Online only Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.0.1 (Release 2008a)
October 2008 Online only Revised for Version 2.0.2 (Release 2008b)
March 2009 Online only Revised for Version 2.0.3 (Release 2009a)
September 2009 Online only Revised for Version 2.0.4 (Release 2009b)
March 2010 Online only Revised for Version 2.1 (Release 2010a)
September 2010 Online only Revised for Version 2.2 (Release 2010b)
January 2011 Online only Revised for Version 2.2.1 (Release 2010bSP1)
April 2011 Online only Revised for Version 2.2.2 (Release 2011a)
September 2011 Online only Revised for Version 2.2.3 (Release 2011b)
March 2012 Online only Revised for Version 2.2.4 (Release 2012a)
September 2012 Online only Revised for Version 2.2.5 (Release 2012b)
March 2013 Online only Revised for Version 2.2.6 (Release 2013a)
September 2013 Online only Revised for Version 2.3 (Release 2013b)
March 2014 Online only Revised for Version 2.3.1 (Release R2014a)

Contents

Getting Started

1
MATLAB Builder JA Product Description 1-2
Key Features . 1-2

Appropriate Tasks for MATLAB Compiler and Builder
Products . 1-3

Roles in the Java Application Deployment Process . . . 1-5

Configure Your Environment . 1-7
Install the Required JDK . 1-7
Set JAVA_HOME . 1-8
Set the CLASSPATH . 1-8
Configure the Native Library Path Variables 1-9

Create a Java Package from MATLAB Code 1-10

Integrate a Java Package into an Application 1-16

Overview

2
Product Overview . 2-2
How Does Java Package Deployment Work? 2-2
Limitations of Support . 2-2

Application Deployment Products and the Compiler
Apps . 2-3
What Is the Difference Between the Compiler Apps and the
mcc Command Line? . 2-3

v

How Does MATLAB Compiler Software Build My
Application? . 2-3

Dependency Analysis Function . 2-6
MEX-Files, DLLs, or Shared Libraries 2-7
Component Technology File (CTF Archive) 2-7

MATLAB Builder JA Prerequisites 2-11
What You Need to Know . 2-11
Required Products . 2-11
Dependency and Non-Compilable Code Considerations . . . 2-11

Integrating a Generated Java Package into a Java
Application . 2-13
Gathering Files Needed for Deployment 2-14
Testing the Java Package in a Java Application 2-14
Distributing MATLAB Code Using the MATLAB Compiler
Runtime (MCR) . 2-19

Integrating Java Classes Generated by MATLAB into a
Java Application . 2-21

Calling Class Methods from Java . 2-22
Handle Data Conversion as Needed 2-22
Build and Test . 2-23

Next Steps . 2-24

MATLAB Code Guidelines

3
Write Deployable MATLAB Code . 3-2
Compiled Applications Do Not Process MATLAB Files at
Runtime . 3-2

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files . 3-3

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths 3-4

Gradually Refactor Applications That Depend on
Noncompilable Functions . 3-4

Do Not Create or Use Nonconstant Static State
Variables . 3-4

vi Contents

Get Proper Licenses for Toolbox Functionality You Want to
Deploy . 3-5

Load MATLAB Libraries using loadlibrary 3-6
Restrictions on Using MATLAB Function loadlibrary with
MATLAB Compiler . 3-7

Use MATLAB Data Files (MAT Files) in Compiled
Applications . 3-8
Explicitly Including MAT files Using the %#function
Pragma . 3-8

Load and Save Functions . 3-8
MATLAB Objects . 3-11

Deploying Java Packages

4
Compile a Java Package with the Library Compiler
App . 4-2

Compile a Java Package from the Command Line 4-8
Execute Compiler Projects with deploytool 4-8
Compile a Java Package with mcc . 4-8

Map Functions to Java Class Methods 4-10
Use the Library Compiler App to Map Functions to Java
Classes . 4-10

Use mcc to Map Functions to Java Classes 4-12

Customizing a Compiler Project

5
Customize the Installer . 5-2
Change the Application Icon . 5-2
Add Application Information . 5-3

vii

Change the Splash Screen . 5-4
Change the Installation Path . 5-4
Change the Logo . 5-5
Edit the Installation Notes . 5-5

Manage Required Files in a Compiler Project 5-6
Dependency Analysis . 5-6
Using the Compiler Apps . 5-6
Using mcc . 5-7

Specify Files to Install with the Application 5-8

Manage Support Packages . 5-9

Programming

6
How MATLAB Builder JA Interacts with the JVM 6-3

About the MATLAB Builder JA API 6-5
What Are MATLAB Generated Java Packages and When
Should You Create Them? . 6-5

Understanding the MATLAB Builder JA API Data
Conversion Classes . 6-6

Automatic Conversion to MATLAB Types 6-7
Understanding Function Signatures Generated by the
MATLAB Builder JA Product . 6-8

Adding Fields to Data Structures and Data Structure
Arrays . 6-9

Returning Data from MATLAB to Java 6-9

Importing Classes . 6-10

Creating an Instance of the Class 6-11
What Is an Instance? . 6-11
Instantiate a Java Class . 6-11

viii Contents

Passing Arguments to and from Java 6-15
Format . 6-15
Manual Conversion of Data Types . 6-15
Automatic Conversion to a MATLAB Type 6-16
Specifying Optional Arguments . 6-18
Handling Return Values . 6-23

Passing Java Objects by Reference 6-29
MATLAB Array . 6-29
Wrappering and Passing Java Objects to MATLAB
Functions with MWJavaObjectRef 6-29

Handling Errors . 6-35
Error Overview . 6-35
Handling Checked Exceptions . 6-35
Handling Unchecked Exceptions . 6-38
Alternatives to Using of System.exit 6-41

Managing MATLAB Resources . 6-42
Why MATLAB Resources Need to be Managed 6-42
Creating MATLAB Objects . 6-42
Disposing of MATLAB Objects . 6-43

Improving Data Access Using the MCR User Data
Interface and MATLAB Builder JA 6-45
Supply Run-Time Profile Information for Parallel
Computing Toolbox Applications 6-46

Dynamically Specifying Run-Time Options to the
MCR . 6-51
What Run-Time Options Can You Specify? 6-51
Setting and Retrieving MCR Option Values Using
MWApplication . 6-51

Sharing an MCR Instance in COM or Java
Applications . 6-54
What Is a Singleton MCR? . 6-54
Advantages and Disadvantages of Using a Singleton 6-54
Which Products Support Singleton MCR and How Do I
Create a Singleton? . 6-55

ix

Handling Data Conversion Between Java and
MATLAB . 6-56
Overview . 6-56
Calling MWArray Methods . 6-56
Creating Buffered Images from a MATLAB Array 6-57

Setting Java Properties . 6-58
How to Set Java System Properties 6-58
Ensure a Consistent GUI Appearance 6-58

Blocking Execution of a Console Application that
Creates Figures . 6-60
waitForFigures Method . 6-60
Block Figure Window Display in a Console Application . . . 6-61

Ensuring Multi-Platform Portability 6-63

CTF Archive Embedding and Extraction 6-65
Overview . 6-65
Using MWComponentOptions Class to Indicate Extraction
Options . 6-65

Using Environment Variables to Indicate Extraction
Options . 6-67

For More Information . 6-69

Learning About Java Classes and Methods by Exploring
the Javadoc . 6-70

Sample Java Applications

7
Plot . 7-2
Purpose . 7-2
Procedure . 7-2

Spectral Analysis . 7-9
Purpose . 7-9
Procedure . 7-10

x Contents

Matrix Math . 7-16
Purpose . 7-16
MATLAB Functions to Be Encapsulated 7-17
Understanding the getfactor Program 7-18
Procedure . 7-18

Phone Book . 7-28
Purpose . 7-28
Procedure . 7-28

Optimization . 7-36
Purpose . 7-36
OptimDemo Package . 7-36
Procedure . 7-37

Web Application . 7-47
Overview . 7-47
Prerequisites . 7-47
Locating the Example Files . 7-48
Build Your Java Package . 7-49
Compiling Your Java Code . 7-50
Generating the Web Archive (WAR) File 7-50
Running the Web Deployment Example 7-51
Using the Web Application . 7-51

Deploying a Java Package Over the Web

8
About the WebFigures Feature . 8-2
Supported Renderers for WebFigures 8-2

Preparing to Implement WebFigures for MATLAB
Builder JA . 8-3
Your Role in the WebFigure Deployment Process 8-3
What You Need to Know to Implement WebFigures 8-5
Required Products . 8-5
Assumptions About the Examples . 8-7
Set DISPLAY on UNIX Systems . 8-8

xi

Implement a Custom WebFigure . 8-9
Overview . 8-9
Setting Up the Web Server . 8-9
Create the Default WebFigure . 8-13
Interact with the Default WebFigure 8-14
Create a Custom WebFigure . 8-15

Advanced Configuration of a WebFigure 8-19
Overview . 8-19
How Do WebFigures Work? . 8-21
Installing WebFigureService . 8-22
Getting the WebFigure Object from Your Method 8-23
Attach a WebFigure . 8-24
Using theWebFigure JSP Tag to Reference aWebFigure . . 8-26
Getting an Embeddable String That References a
WebFigure Attached to a Cache . 8-29

Working with MATLAB Figures and Images

9
Your Role in Working with Figures and Images 9-2

Create and Modify a MATLAB Figure 9-3
Preparing a MATLAB Figure for Export 9-3
Changing the Figure (Optional) . 9-3
Exporting the Figure . 9-4
Cleaning Up the Figure Window . 9-4
Modify and Export Figure Data . 9-5

Working with MATLAB Figure and Image Data 9-6
For More Comprehensive Examples 9-6
Working with Figures . 9-6
Working with Images . 9-7

xii Contents

Creating Scalable Web Applications Using RMI

10
Using Remote Method Invocation (RMI) 10-2

RMI Prerequisites . 10-3

Run the Client and Server on a Single Machine 10-4

Run the Client and Server on Separate Machines 10-8

Use Native Java with Cell Arrays and Struct Arrays . . 10-9
Why Use Native Type Cell Arrays and Struct Arrays? 10-9
Native Type Data Marshaling Prerequisites 10-10
Native Java Cell and Struct . 10-10

Additional RMI Examples . 10-16

Troubleshooting

11
Common MATLAB Builder JA Error Messages 11-2

Reference Information for Java

12
Requirements for the MATLAB Builder JA Product . . . 12-2
System Requirements . 12-2
Path Modifications Required for Accessibility 12-2
MATLAB Builder JA Limitations . 12-3

Data Conversion Rules . 12-4
Java to MATLAB Conversion . 12-4

xiii

MATLAB to Java Conversion . 12-6
Unsupported MATLAB Array Types 12-7

Programming Interfaces Generated by the MATLAB
Builder JA Product . 12-8
APIs Based on MATLAB Function Signatures 12-8
Standard API . 12-9
mlx API . 12-11
Code Fragment: Signatures Generated for the myprimes
Example . 12-11

MWArray Class Specification . 12-13

Deployment Product Terms . 12-14

Function Reference

13

Using MATLAB Compiler on Mac or Linux

A
Overview . A-2

Installing MATLAB Compiler on Mac or Linux A-3
Installing MATLAB Compiler . A-3
Custom Configuring Your Options File A-3
Install Apple Xcode from DVD on Maci64 A-3

Writing Applications for Mac or Linux A-4
Objective-C/C++ Applications for Apple’s Cocoa API A-4
Where’s the Example Code? . A-4
Preparing Your Apple Xcode Development Environment . . A-4
Build and Run the Sierpinski Application A-5
Running the Sierpinski Application A-7

xiv Contents

Building Your Application on Mac or Linux A-10
Compiling Your Application with the Compiler Apps A-10
Compiling Your Application with the Command Line A-10

Testing Your Application on Mac or Linux A-11

Set MCR Paths on Mac or Linux with Scripts A-12
Solving Problems Related to Setting MCR Paths on Mac or
Linux . A-12

xv

xvi Contents

1

Getting Started

• “MATLAB® Builder™ JA Product Description” on page 1-2

• “Appropriate Tasks for MATLAB® Compiler™ and Builder Products” on
page 1-3

• “Roles in the Java Application Deployment Process” on page 1-5

• “Configure Your Environment” on page 1-7

• “Create a Java Package from MATLAB Code” on page 1-10

• “Integrate a Java Package into an Application” on page 1-16

1 Getting Started

MATLAB Builder JA Product Description
Deploy MATLAB® code as Java classes

MATLAB Builder™ JA enables you to create Java® classes from your
MATLAB programs. These Java classes can be integrated into Java programs
and deployed royalty-free to desktop computers or Web servers that do not
have MATLAB installed using the MATLAB Compiler Runtime (MCR) that is
provided with MATLAB Compiler™.

When used with MATLAB Compiler, the builder creates deployable
components that make MATLAB based computations, visualizations, and
user interfaces accessible to end users of the Java programs. When the Java
program is deployed to the Web, multiple users can access it through a Web
browser.

The builder encrypts your MATLAB functions and generates a Java wrapper
around them so that they behave just like any other Java class. Java classes
created with MATLAB Builder JA are portable and run on all platforms
supported by MATLAB.

Key Features

• Royalty-free desktop and Web deployment of Java classes

• MATLAB figure zooming, rotating, and panning via the Web Figures
interface

• Ability to port classes not containing MEX-files to all MATLAB supported
platforms

• API for automatic conversion between Java and MATLAB data types

1-2

Appropriate Tasks for MATLAB® Compiler™ and Builder Products

Appropriate Tasks for MATLAB Compiler and Builder
Products

MATLAB Compiler compiles MATLAB code into standalone applications,
libraries that can be integrated into other applications, or into deployable
archives for use with MATLAB Production Server™. By default, MATLAB
Compiler can generate standalone applications, C/C++ shared libraries, and
deployable archives for use with MATLAB Production Server. Additional
builders are available for Java, .NET, and Microsoft® Excel®.

While MATLAB Compiler lets you run your MATLAB application outside the
MATLAB environment, it is not appropriate for all external tasks you may
want to perform. Some tasks require either the MATLAB Coder™ product
or MATLAB external interfaces. Use the following table to determine if
MATLAB Compiler and builder products are appropriate to your needs.

MATLAB Compiler Task Matrix

Task

MATLAB
Compiler

and
Builders

MATLAB
Coder

MATLAB
External

Interfaces

PackageMATLAB applications
for deployment to users who do
not have MATLAB

■

PackageMATLAB applications
for deployment to MATLAB
Production Server

■

Build non-MATLAB
applications that include
MATLAB functions

■

Generate readable, efficient,
and embeddable C code from
MATLAB code

■

1-3

1 Getting Started

MATLAB Compiler Task Matrix (Continued)

Task

MATLAB
Compiler

and
Builders

MATLAB
Coder

MATLAB
External

Interfaces

Generate MEX functions
from MATLAB code for rapid
prototyping and verification
of generated C code within
MATLAB

■

Integrate MATLAB code into
Simulink®

■

Speed up fixed-point MATLAB
code

■

Generate hardware description
language (HDL) from
MATLAB code

■

Integrate custom C code into
MATLAB with MEX files

■

Call MATLAB from C and
Fortran programs

■

For information on MATLAB Coder see “MATLAB Coder”.

For information on MATLAB external interfaces see “External Code
Integration”.

1-4

Roles in the Java® Application Deployment Process

Roles in the Java Application Deployment Process
Deploying MATLAB functionality through Java applications is a multistep
process that may involve one or more team members. Each step requires
that you perform a specific role, as shown in Java® Application Deployment
Roles on page 1-5.

Java Application Deployment Roles

Role Knowledge Base Responsibilities

MATLAB programmer
• MATLAB expert

• Little to no Java
knowledge

• No IT experience

• Understand
end-user business
requirements and
the mathematical
models needed to
support them.

• Write MATLAB code.

• Build a Java package
with MATLAB tools.

• Pass the package to
the Java developer.

Java developer
• Little to no MATLAB
experience

• Some knowledge of
IT systems

• Java expert

• Write Java code
to execute the
Java classes built
by the MATLAB
programmer.

• Address data
conversion issues
that may be
encountered.

• Ensure the final Java
application executes

1-5

1 Getting Started

Java Application Deployment Roles (Continued)

Role Knowledge Base Responsibilities
reliably in the end
user’s environment.

IT professional
• Little to no MATLAB
experience

• Moderate IT
experience

• Familiarity with IT
systems

• Ensure that systems
using the application
have the required
specifications.

• Install any required
software on target
machines.

• Install the
application on target
machines.

1-6

Configure Your Environment

Configure Your Environment

In this section...

“Install the Required JDK” on page 1-7

“Set JAVA_HOME” on page 1-8

“Set the CLASSPATH” on page 1-8

“Configure the Native Library Path Variables” on page 1-9

Before you can compile MATLAB functions into Java packages or use the
generated Java packages in a Java development environment, you need to
ensure that your Java environment is properly configured. You must verify
that:

• Your system uses the same version of the Java Developer’s Kit (JDK) as
MATLAB.

• JAVA_HOME is set to the folder containing the system’s JDK installation.

• CLASSPATH contains all of the MATLAB library JARs and the JARs for the
pacakges containing your compiled MATLAB code.

• The MATLAB native library paths are properly configured.

Note For updated Java system requirements, including
versions of Java Developer’s Kit (JDK) and Java Runtime
Environment (JRE), see the supported compiler page at
http://www.mathworks.com/support/compilers/current_release/.

Install the Required JDK
To install the proper version of the JDK:

1 Verify the version of Java your MATLAB installation is using by running
the following MATLAB command:

version -java

1-7

http://www.mathworks.com/support/compilers/current_release/

1 Getting Started

2 Download the matching version Java Developer’s Kit (JDK) from
http://www.oracle.com/us/technologies/java/overview/index.html.

3 Install the JDK, following the instructions provided by Oracle®.

Note If you are not developing applications or compiling MATLAB code, you
can use the Java Runtime Environment (JRE) instead of the JDK.

Set JAVA_HOME

1 Set the system environment variable, JAVA_HOME, to point to your JDK
installation.

2 At the MATLAB command prompt, type getenv JAVA_HOME to verify that
MATLAB is reading the correct version of JAVA_HOME.

3 Verify that the folder containing your Java installation has been added to
your system PATH environment variable.

Set the CLASSPATH
To build and run a Java application that uses a MATLAB Builder for Java®

generated component, the system must locate:

• JAR files containing the MATLAB libraries

• Packages that you have developed and built with the builder

Java classes compiled by the builder use classes contained in the
com.mathworks.toolbox.javabuilder package. To use the compiled classes,
you need to include a file called javabuilder.jar on the Java class path. You
can find this file in one of the following folders:

MATLAB installed on your system matlabroot/toolbox/javabuilder/jar

MATLAB Compiler Runtime
installed on your system

mcrroot/toolbox/javabuilder/jar

1-8

http://www.oracle.com/us/technologies/java/overview/index.html

Configure Your Environment

Note matlabroot refers to the root folder into which the MATLAB installer
has placed the MATLAB files. mcrroot refers to the root folder under which
MCR is installed.

In addition, you need to add to the JAR files created by the builder to the
class path.

Configure the Native Library Path Variables
The operating system uses the native library path to locate native libraries
that are needed to run your Java class. See the following list of variable
names according to operating system:

Windows® PATH

Linux® LD_LIBRARY_PATH

Macintosh DYLD_LIBRARY_PATH

The native MATLAB or MCR files needed to execute the compiled MATLAB
functions called from the Java code must be included on the paths listed by
your system’s native library path variable.

1-9

1 Getting Started

Create a Java Package from MATLAB Code
This example shows how to create a Java package using a MATLAB function.
You can then pass the generated package to the developer, who is responsible
for integrating it into an application.

To compile a Java package from MATLAB code:

1 In MATLAB, examine the MATLAB code that want to deploy as a shared
library.

a Open makesqr.m.

function y = makesqr(x)

y = magic(x);

b At the MATLAB command prompt, enter makesqr(5).

The output appears as follows:

ans =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

2 Open the Library Compiler.

a On the toolstrip, select the Apps tab.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Library Compiler.

1-10

Create a Java® Package from MATLAB® Code

1-11

1 Getting Started

3 In the Application Type section of the toolstrip, select Java Package from
the list.

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b In the file explorer that opens, locate and select the makesqr.m file.

makesqr.m is located in
matlabroot\toolbox\javabuilder\Examples\MagicSqaureExample\MagicDemoComp.

c Click Open to select the file, and close the file explorer.

makesqr.m is added to the list of exported files and a minus button
appears under the plus button. In addition, makesqr is set as:

• the library name

• the package name

5 Verify that the function defined in makesqr.m is mapped into Class1.

1-12

Create a Java® Package from MATLAB® Code

6 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB Compiler Runtime (MCR) and installs it along with the deployed
package.

7 Explore the main body of theMATLAB Compiler project window.

The project window is divided into the following areas:

• Application Information — Editable information about the deployed
application. This information is used by the generated installer to populate
the installed application’s metadata. See “Customize the Installer” on page
5-2.

• Class mapper — Description of how the MATLAB functions are mapped
to Java classes.

• Additional Installer Options — Default installation path for the
generated installer. See “Customize the Installer” on page 5-2.

• Files required for your application — Additional files required by
the generated application. These files will be included in the generated
application installer. See “Manage Required Files in a Compiler Project”
on page 5-6.

1-13

1 Getting Started

• Files installed with your application — Files that are installed with
your application. These files include:

- readme.txt

- .jar file

- doc folder

See “Specify Files to Install with the Application” on page 5-8.

8 Click Package.

9 Select the Open output folder when process completes check box.

10 Verify that the generated output contains:

• for_redistribution— A folder containing the installer to distribute the
package

• for_testing — A folder containing the raw generated files to create the
installer

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the package

• PackagingLog.txt— A log file generated by the compiler

11 Click Close on the Package window.

To follow up on this example:

• Try running the function from the command line as follows:

1 Open a system command prompt.

2 Navigate to the for_testing folder of the generated deployment project.

3 Enter the following command:

java -classpath
"matlabroot\toolbox\javabuilder\jar\javabuilder.jar";makesqr.jar
makesqr.Class1 5

matlabroot is the full path to your MATLAB installation.

1-14

Create a Java® Package from MATLAB® Code

• Try creating a package that consists of more than one function.

• Try “Integrate a Java Package into an Application” on page 1-16

1-15

1 Getting Started

Integrate a Java Package into an Application
This example shows how to invoke a MATLAB generated method in a Java
application.

To create a Java application that calls a MATLAB generated method:

1 Install the MATLAB Compiler Runtime (MCR) and generated JARs in one
of the following ways:

• Run the installer generated by MATLAB. It is located in the
for_redistribution folder of the deployment project.

Doing so automatically installs the MCR from the Web and places the
generated JARs onto your computer.

• Manually install the MCR and the generated JARs onto your development
system.

You can download the MCR installer from
http://www.mathworks.com/products/compiler/mcr. The generated JARs
are located in the MATLAB deployment project’s for_testing folder.

2 In the folder containing the generated JARs, create a new file called
getmagic.java.

3 Using a text editor, open getmagic.java.

4 Place the following as the first line in the file.

import com.mathworks.toolbox.javabuilder.*;

This statement imports the MATLAB support classes.

5 Place the following line after the first import statement.

import makesqr.*;

This statement imports the classes generated by the compiler.

6 Add the following class definition.

class getmagic

1-16

http://www.mathworks.com/products/compiler/mcr

Integrate a Java® Package into an Application

{
}

This class has a single main method that calls the generated class.

7 Add the main() method to the application.

public static void main(String[] args)
{
}

8 Add the following code to the top of the main() method.

MWNumericArray n = null;
Object[] result = null;
Class1 theMagic = null;

This initializes the variables used by the application.

• n is an instance of the MATLAB MWNumericArray class that MATLAB uses
for its internal data format.

• result is a generic Java object that holds the results of the call to MATLAB.

• theMagic is an instance class generated from the MATLAB function.

9 Add the following code after the variable initialization.

if (args.length == 0)
{

System.out.println("Error: must input a positive integer");
return;

}

This is a simple check to ensure that the required command-line argument
was passed to the application.

10 Add a try/catch/finally block after the argument check.

11 In the try section of the try/catch/finally block, add the following code.

n = new MWNumericArray(Double.valueOf(args[0]), MWClassID.DOUBLE);

1-17

1 Getting Started

The code instantiates an instance of MWNumericArray and populates it with a
1-by-1 array containing the integer passed to the application on the command
line. The value is converted to a Double because that is the most direct
mapping between the Java and MATLAB internal data representation.

12 After the code instantiating the input parameter, add the following to
instantiate the class generated from MATLAB.

theMagic = new Class1();

The constructor for the generated class handles all of the setup required to
start the MCR and populate it with the required MATLAB code.

13 Using the newly instantiated object, call the MATLAB function.

result = theMagic.makesqr(1, n);
System.out.println(result[0]);

14 Add the following catch section to the try/catch/finally block to handle any
exceptions that might be thrown.

catch (Exception e)
{

System.out.println("Exception: " + e.toString());
}

15 Add the following finally section to the try/catch/finally block to clean up
any resources.

finally
{

MWArray.disposeArray(n);
MWArray.disposeArray(result);
theMagic.dispose();

}

The disposeArray() and dispose() methods clean up the resources used by
the generated MATLAB code.

16 Save the Java file.

1-18

Integrate a Java® Package into an Application

The completed Java file should resemble the following.

import com.mathworks.toolbox.javabuilder.*;
import makesqr.*;

class getmagic
{

public static void main(String[] args)
{

MWNumericArray n = null;
Object[] result = null;
Class1 theMagic = null;

if (args.length == 0)
{

System.out.println("Error: must input a positive integer");
return;

}

try
{

n = new MWNumericArray(Double.valueOf(args[0]),
MWClassID.DOUBLE);

theMagic = new Class1();

result = theMagic.makesqr(1, n);
System.out.println(result[0]);

}
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
}
finally
{

MWArray.disposeArray(n);
MWArray.disposeArray(result);
theMagic.dispose();

}
}

1-19

1 Getting Started

}

17 Use the system’s command line to navigate to the folder where you installed
the generated Java package and saved the new Java file.

18 Compile the Java application using javac.

javac -classpath
"mcrroot\toolbox\javabuilder\jar\javabuilder.jar";.\makesqr.jar
.\getmagic.java

Note On UNIX® platforms, use colon (:) as the class path delimiter instead
of semicolon (;).

mcrroot is the path to where the MCR is installed on your system. If you
have MATLAB installed on your system instead, you can use the path to
your MATLAB installation.

19 From the system’s command prompt, run the application.

java -classpath .;"c:\Program Files\MATLAB\MATLAB Compiler Runtime\v82\tool
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

You must be sure to place a dot (.) in the first position of the class path. If it
not, you get a message stating that Java cannot load the class.

Note On UNIX platforms, use colon (:) as the class path delimiter instead
of semicolon (;).

mcrroot is the path to where the MCR is installed on your system. If you
have MATLAB installed on your system instead, you can use the path to
your MATLAB installation.

1-20

Integrate a Java® Package into an Application

To follow up on this example:

• Try installing the new application on a different computer.

• Try building an installer for the application.

• Try integrating a package that consists of multiple functions.

1-21

1 Getting Started

1-22

2

Overview

• “Product Overview” on page 2-2

• “Application Deployment Products and the Compiler Apps” on page 2-3

• “MATLAB® Builder™ JA Prerequisites” on page 2-11

• “Integrating a Generated Java Package into a Java Application” on page
2-13

• “Next Steps” on page 2-24

2 Overview

Product Overview

In this section...

“How Does Java Package Deployment Work?” on page 2-2

“Limitations of Support” on page 2-2

How Does Java Package Deployment Work?
There are two kinds of deployment:

• Installing the generated packages and setting up support for them on a
development machine so that they can be accessed by a developer who
seeks to use them in writing a Java application.

• Deploying support for the generated packages when they are accessed at
run time on an end user machine.

To accomplish this kind of deployment, you must make sure that the
installer you create for the application takes care of supporting the Java
packages on the target machine. In general, this means the MCR must
be installed, on the target machine. You must also install the MATLAB
Builder JA generated packages.

Note Java packages created with the MATLAB Builder JA product are
dependent on the version of MATLAB with which they were built.

Limitations of Support
MATLAB Builder JA provides a wide variety of support for various Java
types and objects. However, MATLAB objects are not supported as inputs or
outputs for compiled or deployed functions.

2-2

Application Deployment Products and the Compiler Apps

Application Deployment Products and the Compiler Apps

In this section...

“What Is the Difference Between the Compiler Apps and the mcc Command
Line?” on page 2-3

“How Does MATLAB® Compiler™ Software Build My Application?” on
page 2-3

“Dependency Analysis Function” on page 2-6

“MEX-Files, DLLs, or Shared Libraries” on page 2-7

“Component Technology File (CTF Archive)” on page 2-7

What Is the Difference Between the Compiler Apps
and the mcc Command Line?
When you use one of the compiler apps, you perform any function you would
invoke using the MATLAB Compiler mcc command-line interface. The
compiler apps’ interactive menus and dialogs build mcc commands that are
customized to your specification. As such, your MATLAB code is processed
the same way as if you were compiling it using mcc.

Compiler app advantages include:

• You perform related deployment tasks with a single intuitive interface.

• You maintain related information in a convenient project file.

• Your project state persists between sessions.

• You load previously stored compiler projects from a prepopulated menu.

• Package applications for distribution.

How Does MATLAB Compiler Software Build My
Application?
To build an application, MATLAB Compiler software performs these tasks:

1 Parses command-line arguments and classifies by type the files you provide.

2-3

2 Overview

2 Analyzes files for dependencies using a dependency analysis function.
Dependencies affect deployability and originate from functions called by
the file. Deployability is affected by:

• File type — MATLAB, Java, MEX, and so on.

• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about how the compiler does dependency analysis,
see “Dependency Analysis Function” on page 2-6.

2-4

Application Deployment Products and the Compiler Apps

2-5

2 Overview

4 Creates a CTF archive from the input files and their dependencies. For
more details about CTF archives see “Component Technology File (CTF
Archive)” on page 2-7.

5 Generates target-specific wrapper code. For example, a C main function
requires a very different wrapper than the wrapper for a Java interface
class.

6 Generates target-specific binary package. For library targets such as C++
shared libraries, Java packages, or .NET assemblies, the compiler will
invoke the required third-party compiler.

Dependency Analysis Function
MATLAB Compiler uses a dependency analysis function to determine the
list of necessary files to include in the generated package. Sometimes, this
process generates a large list of files, particularly when MATLAB object
classes exist in the compilation and the dependency analyzer cannot resolve
overloaded methods at compile time. Dependency analysis also processes
include/exclude files on each pass.

Tip To improve compile time performance and lessen application size, prune
the path with the mcc command’s -N and -p flags. You can also specify Files
required for your application in the compiler app.

The dependency analyzer searches for executable content such as:

• MATLAB files

• P-files

Note If the MATLAB file corresponding to the p-file is not available, the
dependency analysis will not be able to determine the p-file’s dependencies.

• Java classes and .jar files

• .fig files

2-6

Application Deployment Products and the Compiler Apps

• MEX-files

The dependency analyzer does not search for data files of any kind. You must
manually include data files in the search.

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that
the dependency analyzer can find them. Doing so allows you to avoid many
common compilation problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared
libraries to determine their dependencies, explicitly include all executable
files these files require. To do so, use either the mcc -a option or the Files
required for your application to run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB
function called by a MEX-file, DLL, or shared library, then manually
include that function. To do so, use either the mcc -a option or the Files
required for your application to run field in the compiler app.

• Not all functions are compatible with MATLAB Compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all
functions called from your application that you cannot deploy.

Component Technology File (CTF Archive)
Each application or shared library you produce using MATLAB Compiler
has an embedded Component Technology File (CTF) archive. The archive
contains all the MATLAB based content (MATLAB files, MEX-files, and so
on) associated with the component. All MATLAB files in the CTF archive are
encrypted using the Advanced Encryption Standard (AES) cryptosystem.

If you choose to extract the CTF archive as a separate file, the files remain
encrypted. For more information on how to extract the CTF archive refer to
the references in the following table.

2-7

2 Overview

Information on CTF Archive Embedding/Extraction and Component
Cache

Product Refer to

MATLAB Compiler “MCR Component Cache and CTF
Archive Embedding”

MATLAB Builder NE “MCR Component Cache and CTF
Archive Embedding”

MATLAB Builder JA “CTF Archive Embedding and
Extraction” on page 6-65

MATLAB Builder EX Using MCR Component Cache and
CTF Archive Embedding

2-8

Application Deployment Products and the Compiler Apps

2-9

2 Overview

Additional Details
Multiple CTF archives, such as those generated with COM, .NET, or Excel®

components, can coexist in the same user application. You cannot, however,
mix and match the MATLAB files they contain. You cannot combine
encrypted and compressed MATLAB files from multiple CTF archives into
another CTF archive and distribute them.

All the MATLAB files from a given CTF archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same
CTF archive, do not execute. If you want to generate another application
with a different mix of MATLAB files, recompile these MATLAB files into a
new CTF archive.

MATLAB Compiler deletes the CTF archive and generated binary following
a failed compilation, but only if these files did not exist before compilation
initiates. Run help mcc -K for more information.

Caution Release Engineers and Software Configuration Managers:
Do not use build procedures or processes that strip shared libraries on CTF
archives. If you do, you can possibly strip the CTF archive from the binary,
resulting in run-time errors for the driver application.

2-10

MATLAB® Builder™ JA Prerequisites

MATLAB Builder JA Prerequisites

In this section...

“What You Need to Know” on page 2-11

“Required Products” on page 2-11

“Dependency and Non-Compilable Code Considerations” on page 2-11

What You Need to Know
The following knowledge is assumed when you use the MATLAB Builder
JA product:

• If your job function is MATLAB programmer, the following is required:

- A basic knowledge of MATLAB, and how to work with cell arrays and
structures

• If your job function is Java developer, the following is required:

- Exposure to the Java programming language

- Object-oriented programming concepts

Required Products
You must install the following products to run the example described in this
chapter:

• MATLAB

• MATLAB Compiler

• MATLAB Builder JA

Dependency and Non-Compilable Code
Considerations
Before you deploy your code, examine the code for dependencies on functions
that may not be compatible with MATLAB Compiler.

2-11

2 Overview

For more detailed information about dependency analysis (depfun) and how
MATLAB Compiler evaluates MATLAB code prior to compilation, see “Write
Deployable MATLAB Code” in the MATLAB Compiler documentation.

2-12

Integrating a Generated Java® Package into a Java® Application

Integrating a Generated Java Package into a Java
Application

In this section...

“Gathering Files Needed for Deployment” on page 2-14

“Testing the Java Package in a Java Application” on page 2-14

“Distributing MATLAB Code Using the MATLAB Compiler Runtime
(MCR)” on page 2-19

“Integrating Java Classes Generated by MATLAB into a Java Application”
on page 2-21

“Calling Class Methods from Java” on page 2-22

“Handle Data Conversion as Needed” on page 2-22

“Build and Test” on page 2-23

Key Tasks

Task Reference

Ensure you have the needed files
from the MATLAB Programmer
before proceeding.

“Gathering Files Needed for
Deployment” on page 2-14

Test the Java code by using it in a
Java application. Compile and run
the package to ensure it produces the
same results as your MATLAB code.

“Testing the Java Package in a Java
Application” on page 2-14

Install the MATLAB Component
Runtime (MCR) and update system
paths.

“Distributing MATLAB Code Using
the MATLAB Compiler Runtime
(MCR)” on page 2-19

Import classes generated by the
MATLAB Builder JA product into
existing Java applications.

“Integrating Java Classes Generated
by MATLAB into a Java Application”
on page 2-21

Use built-in Java class methods to
enhance your Java application.

“Calling Class Methods from Java”
on page 2-22

2-13

2 Overview

Key Tasks (Continued)

Task Reference

Address potential data conversion
issues with differing data types.

“Handle Data Conversion as Needed”
on page 2-22

Verify your Java application works
as expected in your end user’s
deployment environment.

“Build and Test” on page 2-23

Gathering Files Needed for Deployment
Before beginning, verify you have access to the installer created by the
MATLAB Programmer in “Create a Java Package from MATLAB Code”
on page 1-10. In addition to the generated installer, the following files are
required to use the package:

• Javadoc documentation at matlabroot/help/javabuilder/MWArrayAPI.

• readme.txt file

• com.mathworks.toolbox.javabuilder at
matlabroot/help/javabuilder/MWArrayAPI.

- For 32-bit installations:
matlabroot/toolbox/javabuilder/jar/javabuilder.jar

- For 64-bit installations:
matlabroot/toolbox/javabuilder/jar/win64/javabuilder.jar

Testing the Java Package in a Java Application
Before deploying the generated package, you need to verify that it can be used
in a Java application successfully.

First, create a small Java program that uses the package created for you
by the MATLAB Programmer (see “Integrate a Java Package into an
Application” on page 1-16). The example provides a sample Java program
that accomplishes this.

The program imports the magicsquare package you created with
the library compiler app and the MATLAB Builder JA package

2-14

Integrating a Generated Java® Package into a Java® Application

(com.mathworks.toolbox.javabuilder) and uses one of the MATLAB
Builder JA conversion classes to convert the number passed to the program
on the command line into a type that can be accepted by MATLAB, in this
case a scalar double value.

The program then creates an instance of class magic, and calls the makesqr
method on that object. Note how the MATLAB file becomes a method of the
Java class that encapsulates it. The source code of getmagic.java follows,
for your reference:

import com.mathworks.toolbox.javabuilder.*;
import makesqr.*;

class getmagic
{

public static void main(String[] args)
{

MWNumericArray n = null;
Object[] result = null;
Class1 theMagic = null;

if (args.length == 0)
{

System.out.println("Error: must input a positive integer");
return;

}

try
{

n = new MWNumericArray(Double.valueOf(args[0]),
MWClassID.DOUBLE);

theMagic = new Class1();

result = theMagic.makesqr(1, n);
System.out.println(result[0]);

}
catch (Exception e)
{

System.out.println("Exception: " + e.toString());

2-15

2 Overview

}
finally
{

MWArray.disposeArray(n);
MWArray.disposeArray(result);
theMagic.dispose();

}
}

}

Ensure your current working folder contains the application code. Then,
do the following:

1 Compile the application with the Java compiler, javac. At the command
prompt, enter one of the following commands. When entering these
commands, ensure they are entered as one continuous command. On Windows
systems, the semicolon (;) is a concatenation character. On UNIX systems,
the colon (:) is a concatenation character.

• On Windows platforms:

javac -classpath
"mcrroot\toolbox\javabuilder\jar\javabuilder.jar";.\makesqr.jar
.\getmagic.java

• On UNIX platforms:

javac -classpath
"mcrroot\toolbox\javabuilder\jar\javabuilder.jar":.\makesqr.jar
.\getmagic.java

Inspect the syntax of the javac compile command on Windows platforms:

javac -classpath "mcrroot\toolbox\javabuilder\jar\javabuilder.jar";.\makesq

The components of this command are:

• %JAVA_HOME%/bin/javac—Using this command invokes the Java compiler
explicitly from the version of Java you set with JAVA_HOME (see “Configure
Your Environment” on page 1-7).

2-16

Integrating a Generated Java® Package into a Java® Application

Note %JAVA_HOME% is Windows syntax and $JAVA_HOME is UNIX syntax.

• -classpath— Using this argument allows Java to access the packages and
other files you need to compile your application.

• matlabroot\toolbox\javabuilder\jar\javabuilder.jar
— The location of the MATLAB Builder JA package file
(com.mathworks.toolbox.javabuilder).

- For 32-bit installations:
matlabroot\toolbox\javabuilder\jar\javabuilder.jar

- For 64-bit installations:
matlabroot\toolbox\javabuilder\jar\win64\javabuilder.jar

• .\magicsquare\distrib\magicsquare.jar — The location of the
magicsquare package file you created with deploytool.

• .\MagicDemoJavaApp\getmagic.java — The location of the
getmagic.java source file.

2 When you run getmagic, you pass an input argument to Java representing the
dimension for the magic square. In this example, the value for the dimension
is 5. Run getmagic by entering one of the following java commands at the
command prompt. When entering these commands, ensure they are entered
as one continuous command. On Windows systems, the semicolon (;) is a
concatenation character. On UNIX systems, the colon (:) is a concatenation
character.

• On Windows platforms:

java -classpath .;"c:\Program Files\MATLAB\MATLAB Compiler Runtime\v82\toolbox\javabuilder\jar\javabuilder.jar";.\

• On UNIX platforms:

java -classpath .;"c:\Program Files\MATLAB\MATLAB Compiler Runtime\v82\toolbox\javabuilder\jar\javabuilde

Inspect the syntax of the java command on Windows platforms:

2-17

2 Overview

java -classpath .;"c:\Program Files\MATLAB\MATLAB Compiler

Runtime\v82\toolbox\javabuilder\jar\javabuilder.jar";.\makesqr.jar getmagic 5

Note If you are running on the Mac 64-bit platform, you must add the -d64
flag in the Java command. See “MATLAB® Builder™ JA Limitations” on page
12-3 for more specific information.

The components of this command are:

• %JAVA_HOME%\bin\java — Using this command invokes the Java run time
explicitly from the MATLAB JRE.

• -classpath — Using this argument allows Java to access the packages
and other files you need to run your application.

• .\MagicDemoJavaApp;— The location of getmagic.class. The semicolon
concatenates this file location with the following file location, so Java can
find the files needed to run your program.

• matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
— The location of the MATLAB Builder JA package file
(com.mathworks.toolbox.javabuilder). The semicolon concatenates
this file location with the following file location, so Java can find the files
needed to run your program.

- For 32-bit installations:
matlabroot\toolbox\javabuilder\jar\javabuilder.jar

- For 64-bit installations:
matlabroot\toolbox\javabuilder\jar\win64\javabuilder.jar

• .\magicsquare\distrib\magicsquare.jar — The location of the
magicsquare package file you created with deploytool.

• getmagic 5 — Invokes the compiled getmagic application with the
command-line argument 5.

3 Verify the output. If the program ran successfully, a magic square of order 5
will print, matching the output of the MATLAB function, as follows:

17 24 1 8 15

2-18

Integrating a Generated Java® Package into a Java® Application

23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

Using mcrroot to Test Against the MCR
To test directly against the MCR, substitute mcrroot for
matlabroot, where mcrroot is the location where the MCR is
installed on your system. An example of an MCR root location is
D:\Applications\MATLAB\MATLAB_Compiler_Runtime\MCR_version_number.
Remember to double-quote all parts of the java command path arguments
that contain spaces.

Distributing MATLAB Code Using the MATLAB
Compiler Runtime (MCR)
On target computers without MATLAB, install the MCR, if it is not already
present on the deployment machine.

Install MATLAB Compiler Runtime (MCR)
The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable execution of MATLAB files
on systems without an installed version of MATLAB.

The MATLAB Compiler Runtime (MCR) is now available for downloading
from the Web to simplify the distribution of your applications or components
created with the MATLAB Compiler. Download the MCR from the MATLAB
Compiler Runtime product page.

The MCR installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

2-19

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

2 Overview

MCR Prerequisites

1 Since installing the MCR requires write access to the system registry,
ensure you have administrator privileges to run the MCR Installer.

2 The version of the MCR that runs your application on the target computer
must be compatible with the version of MATLAB Compiler that built the
component.

3 Do not install the MCR in MATLAB installation directories.

4 The MCR installer requires approximately 2 GB of disk space.

Add the MCR Installer to the Installer
This example shows how to include the MCR in the generated installer, using
one of the compiler apps. The generated installer contains all files needed
to run the standalone application or shared library built with MATLAB
Compiler and properly lays they out on a target system.

1 On the Packaging Options section of the compiler interface, select one or
both of the following options:

• Runtime downloaded from web — This option builds an installer
that invokes the MCR installer from the MathWorks Web site.

• Runtime included in package — The option includes the MCR
installer into the generated installer.

2 Click Package.

3 Distribute the installer as needed.

Install the MCR
This example shows how to install the MATLAB Compiler Runtime (MCR)
on a system.

If you are given an installer containing the compiled artifacts, then the MCR
is installed along with the application or shared library. If you are given
just the raw binary files, download the MCR installer from the Web and run
the installer.

2-20

Integrating a Generated Java® Package into a Java® Application

Note If you are running on a platform other than Windows, set the system
paths on the target machine. Setting the paths enables your application to
find the MCR.

Windows paths are set automatically. On Linux and Mac, you can use the
run script to set paths. See “Using MATLAB Compiler on Mac or Linux” for
detailed information on performing all deployment tasks specifically with
UNIX variants such as Linux and Mac.

Integrating Java Classes Generated by MATLAB into
a Java Application
If you are implementing your Java application on a computer other than
the one on which it was built:

1 Install the MATLAB Compiler Runtime on the target system. See
“Distributing MATLAB Code Using the MATLAB Compiler Runtime
(MCR)” in the MATLAB Compiler documentation.

2 Consult the Javadoc for information on classes generated
by MATLAB classes. Reference the Javadoc from
matlabroot/help/javabuilder/MWArrayAPI.

3 To integrate the Java class generated by MATLAB Builder JA both the
generated classes and the supporting MATLAB classes need to be imported.
Import the MATLAB libraries and the generated classes into your code
with the Java import function. For example:

import com.mathworks.toolbox.javabuilder.*;
import packagename.classname; or import packagename.*;

For more information, see “Importing Classes ” on page 6-10.

4 As with all Java classes, you must use the new function to create an
instance of a class. To create an object (theMagic) from the magic class,
the example application uses the following code:

theMagic = new magic();

2-21

2 Overview

For more information, see “Creating an Instance of the Class” on page 6-11.

5 To conserve system resources and optimize performance, it is good practice
to get in the habit of destroying any instances of classes that are no longer
needed. For example, to dispose of the object theMagic, use the following
code:

theMagic.dispose();
/* Make it eligible for garbage collection */
theMagic = null;

For more information, see “Managing MATLAB Resources” on page 6-42, in
particular, “Creating MATLAB Objects” on page 6-42.

Calling Class Methods from Java
After you have instantiated the class, you can call a class method as you
would with any Java object. In the Magic Square example, the makesqr
method is called as shown:

result = theMagic.makesqr(1, n);

Here n is an instance of an MWArray class. Note that the first argument
expresses number of outputs (1) and succeeding arguments represent inputs
(n).

See the following code fragment for the declaration of n:

n = new MWNumericArray(Double.valueOf(args[0],
MWClassID.DOUBLE);

Note The MATLAB Builder JA product provides a rich API for integrating
the generated packagess. Detailed examples and complete listings of input
parameters and possible thrown exceptions can be found in the Javadoc.

Handle Data Conversion as Needed
When you invoke a method on a generated class, the input parameters
received by the method must be in the MATLAB internal array format. You

2-22

Integrating a Generated Java® Package into a Java® Application

can either (manually) convert them yourself within the calling program, or
pass the parameters as Java data types.

• To manually convert to one of the standard MATLAB data types, use
MWArray classes in the package com.mathworks.toolbox.javabuilder.

• If you pass them as Java data types, they are automatically converted.

How MATLAB Builder JA Handles Data
To enable Java applications to exchange data with MATLAB methods
they invoke, the builder provides an API, which is implemented as the
com.mathworks.toolbox.javabuilder.MWArray package. This package
provides a set of data conversion classes derived from the abstract class,
MWArray. Each class represents a MATLAB data type.

For more detailed information on data handling within the
product and programming with the MWArray package, see the
com.mathworks.toolbox.javabuilder.MWArray Javadoc and “About the
MATLAB® Builder™ JA API” on page 6-5.

Build and Test
Build and test the Java application as you would any application in your end
user’s environment. Build on what you’ve created by working with additional
classes and methods.

After you create and distribute the initial application, you will want to
continue to enhance it. Details about some of the more common tasks you will
perform as you develop your application are listed in the chapters described in
“Next Steps” on page 2-24.

Running a 64-Bit Mac Application
See “Using MATLAB Compiler on Mac or Linux” in the MATLAB Compiler
User’s Guide for complete information about building, deploying, and testing
UNIX applications with MATLAB Compiler.

2-23

2 Overview

Next Steps
Writing Java applications that
can access Java methods that
encapsulate MATLAB code

“About the MATLAB® Builder™ JA
API” on page 6-5
“Importing Classes ” on page 6-10
“Creating an Instance of the Class”
on page 6-11
“Passing Arguments to and from
Java” on page 6-15
“Passing Java Objects by Reference”
on page 6-29
“Handling Errors” on page 6-35
“Managing MATLAB Resources” on
page 6-42

Sample applications that access
methods developed in MATLAB

“Plot” on page 7-2
“Spectral Analysis” on page 7-9
“Matrix Math” on page 7-16
“Phone Book” on page 7-28
“Optimization” on page 7-36
“Web Application” on page 7-47

Deploying figures over the Web “Implement a Custom WebFigure”
on page 8-9

Reference information about
automatic data conversion rules

“Data Conversion Rules” on page
12-4

2-24

3

MATLAB Code Guidelines

• “Write Deployable MATLAB Code” on page 3-2

• “Load MATLAB Libraries using loadlibrary” on page 3-6

• “Use MATLAB Data Files (MAT Files) in Compiled Applications” on page
3-8

3 MATLAB® Code Guidelines

Write Deployable MATLAB Code

In this section...

“Compiled Applications Do Not Process MATLAB Files at Runtime” on
page 3-2

“Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files” on page 3-3

“Use ismcc and isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 3-4

“Gradually Refactor Applications That Depend on Noncompilable
Functions” on page 3-4

“Do Not Create or Use Nonconstant Static State Variables” on page 3-4

“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on
page 3-5

Compiled Applications Do Not Process MATLAB Files
at Runtime
MATLAB Compiler secures your code against unauthorized changes.
Deployable MATLAB files are suspended or frozen at the time MATLAB
Compiler encrypts them—they do not change from that point onward. This
does not mean that you cannot deploy a flexible application—it means that
you must design your application with flexibility in mind. If you want the end
user to be able to choose between two different methods, for example, both
methods must be available in the built component.

The MCR only works on MATLAB code that was encrypted when the
component was built. Any function or process that dynamically generates
new MATLAB code will not work against the MCR.

Some MATLAB toolboxes, such as the Neural Network Toolbox™ product,
generate MATLAB code dynamically. Because the MCR only executes
encrypted MATLAB files, and the Neural Network Toolbox generates
unencrypted MATLAB files, some functions in the Neural Network Toolbox
cannot be deployed.

3-2

Write Deployable MATLAB® Code

Similarly, functions that need to examine the contents of a MATLAB function
file cannot be deployed. HELP, for example, is dynamic and not available in
deployed mode. You can use LOADLIBRARY in deployed mode if you provide
it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and
attempting to deploy it, perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.

2 Compile the MATLAB code with MATLAB Compiler, including the
generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function
handles.

If you require the ability to create MATLAB code for dynamic run time
processing, your end users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control
the Execution of MATLAB Files
In general, good programming practices advise against redirecting a program
search path dynamically within the code. Many developers are prone to this
behavior since it mimics the actions they usually perform on the command
line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are
fixed and cannot change. Therefore, any attempts to change these paths
(using the cd command or the addpath command) fails

If you find you cannot avoid placing addpath calls in your MATLAB code, use
ismcc and isdeployed. See “Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths” on page 3-4 for details.

3-3

3 MATLAB® Code Guidelines

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB
code is deployable, and which is not. Such specification minimizes your
compilation errors and helps create more efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your
startup.m. Using ismcc and isdeployed, you specify when and what is
compiled and executed.

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing
non-compilable or non-deployable functions that use ismcc and isdeployed.
Your eventual goal is “graceful degradation” of non-deployable code. In
other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run time code sections:

• Design-time code is code that is currently evolving. Almost all code goes
through a phase of perpetual rewriting, debugging, and optimization. In
some toolboxes, such as the Neural Network Toolbox product, the code goes
through a period of self-training as it reacts to various data permutations
and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a
finished state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be
deployed or for code that calls undeployable code.

Do Not Create or Use Nonconstant Static State
Variables
Avoid using the following:

• Global variables in MATLAB code

3-4

Write Deployable MATLAB® Code

• Static variables in MEX-files

• Static variables in Java code

The state of these variables is persistent and shared with everything in the
process.

When deploying applications, using persistent variables can cause problems
because the MCR process runs in a single thread. You cannot load more than
one of these non-constant, static variables into the same process. In addition,
these static variables do not work well in multithreaded applications.

When programming with builder components, you should be aware that an
instance of the MCR is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to
the MCR created by the previous instance of the same class. In short, if an
assembly contains n unique classes, there will be maximum of n instances
of MCRs created, each corresponding to one or more instances of one of the
classes.

If you must use static variables, bind them to instances. For example,
defining instance variables in a Java class is preferable to defining the
variable as static.

Note This guideline does not apply to MATLAB Builder EX. When
programming with Microsoft® Excel, you can assign global variables to large
matrices that persist between calls.

Get Proper Licenses for Toolbox Functionality You
Want to Deploy
You must have a valid MathWorks® license for toolboxes you use to create
deployable components.

If you do not have a valid license for your toolbox, you cannot create a
deployable component with it.

3-5

3 MATLAB® Code Guidelines

Load MATLAB Libraries using loadlibrary

Note It is important to understand the difference between the following:

• MATLAB loadlibrary function — Loads shared library into MATLAB.

• Operating system loadlibrary function — Loads specified Windows
or UNIX operating system module into the address space of the calling
process.

With MATLAB Compiler version 4.0 (R14) and later, you can use MATLAB
file prototypes as described below to load your library in a compiled
application. Loading libraries using H-file headers is not supported in
compiled applications. This behavior occurs when loadlibrary is compiled
with the header argument as in the statement:

loadlibrary(library, header)

In order to work around this issue, execute the following at the MATLAB
command prompt:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

where mylibrarymfile is the name of a MATLAB file you would like to use
when loading this library. This step only needs to be performed once to
generate a MATLAB file for the library.

In the code that is to be compiled, you can now call loadlibrary with the
following syntax:

loadlibrary(library, @mylibrarymfile, 'alias', alias)

It is only required to add the prototype .m file and .dll file to the CTF archive
of the deployed application. There is no need for .h files and C/C++ compilers
to be installed on the deployment machine if the prototype file is used.

Once the prototype file is generated, add the file to the CTF archive of the
application being compiled. You can do this with the -a option (if using the

3-6

Load MATLAB Libraries using loadlibrary

mcc command) or by dragging it under Other/Additional Files (as a helper
file) if using the Deployment Tool.

With MATLAB Compiler versions 4.0.1 (R14+) and later, generated MATLAB
files will automatically be included in the CTF file as part of the compilation
process. For MATLAB Compiler versions 4.0 (R14) and later, include your
library MATLAB file in the compilation with the -a option with mcc.

Restrictions on Using MATLAB Function loadlibrary
with MATLAB Compiler
Note the following limitations in regards to using loadlibrary with MATLAB
Compiler. For complete documentation and up to date restrictions on
loadlibrary, please reference the MATLAB documentation.

• You can not use loadlibrary inside of MATLAB to load a shared library
built with MATLAB Compiler.

• With MATLAB Compiler Version 3.0 (R13SP1) and earlier, you cannot
compile calls to loadlibrary because of general restrictions and limitations
of the product.

3-7

3 MATLAB® Code Guidelines

Use MATLAB Data Files (MAT Files) in Compiled Applications

In this section...

“Explicitly Including MAT files Using the %#function Pragma” on page 3-8

“Load and Save Functions” on page 3-8

“MATLAB Objects” on page 3-11

Explicitly Including MAT files Using the %#function
Pragma
MATLAB Compiler excludes MAT files from “Dependency Analysis Function”
on page 2-6 by default.

If you want MATLAB Compiler to explicitly inspect data within a MAT file,
you need to specify the %#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Neural Network Toolbox,
you need to use the %#function pragma within your GUI code to include a
dependency on the gmdistribution class, for instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful
to code LOAD and SAVE functions to manipulate the data and store it for later
processing.

• Use isdeployed to determine if your code is running in or out of the
MATLAB workspace.

• Specify the data file by either using WHICH (to locate its full path name)
define it relative to the location of ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted
when written to the CTF archive.

For more information about CTF archives, see “Component Technology File
(CTF Archive)” on page 2-7.

See the ctfroot reference page for more information about ctfroot.

3-8

Use MATLAB Data Files (MAT Files) in Compiled Applications

Use the following example as a template for manipulating your MATLAB
data inside, and outside, of MATLAB.

Using Load/Save Functions to Process MATLAB Data for
Deployed Applications
The following example specifies three MATLAB data files:

• user_data.mat

• userdata\extra_data.mat

• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.

2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
'.\userdata\extra_data.mat' -a
'..\externdata\extern_data.mat'

ex_loadsave.m.

function ex_loadsave

% This example shows how to work with the

% "load/save" functions on data files in

% deployed mode. There are three source data files

% in this example.

% user_data.mat

% userdata\extra_data.mat

% ..\externdata\extern_data.mat

%

% Compile this example with the mcc command:

% mcc -m ex_loadsave.m -a 'user_data.mat' -a

% '.\userdata\extra_data.mat'

% -a '..\externdata\extern_data.mat'

% All the folders under the current main MATLAB file directory will

% be included as

% relative path to ctfroot; All other folders will have the

% folder

% structure included in the ctf archive file from root of the

3-9

3 MATLAB® Code Guidelines

% disk drive.

%

% If a data file is outside of the main MATLAB file path,

% the absolute path will be

% included in ctf and extracted under ctfroot. For example:

% Data file

% "c:\$matlabroot\examples\externdata\extern_data.mat"

% will be added into ctf and extracted to

% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".

%

% All mat/data files are unchanged after mcc runs. There is

% no excryption on these user included data files. They are

% included in the ctf archive.

%

% The target data file is:

% .\output\saved_data.mat

% When writing the file to local disk, do not save any files

% under ctfroot since it may be refreshed and deleted

% when the application isnext started.

%==== load data file =============================

if isdeployed

% In deployed mode, all file under CTFRoot in the path are loaded

% by full path name or relative to $ctfroot.

% LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));

% LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));

LOADFILENAME1=which(fullfile('user_data.mat'));

LOADFILENAME2=which(fullfile('extra_data.mat'));

% For external data file, full path will be added into ctf;

% you don't need specify the full path to find the file.

LOADFILENAME3=which(fullfile('extern_data.mat'));

else

%running the code in MATLAB

LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','user_data.mat');

LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','userdata','extra_data.mat');

LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',

'externdata','extern_data.mat');

end

3-10

Use MATLAB Data Files (MAT Files) in Compiled Applications

% Load the data file from current working directory

disp(['Load A from : ',LOADFILENAME1]);

load(LOADFILENAME1,'data1');

disp('A= ');

disp(data1);

% Load the data file from sub directory

disp(['Load B from : ',LOADFILENAME2]);

load(LOADFILENAME2,'data2');

disp('B= ');

disp(data2);

% Load extern data outside of current working directory

disp(['Load extern data from : ',LOADFILENAME3]);

load(LOADFILENAME3);

disp('ext_data= ');

disp(ext_data);

%==== multiple the data matrix by 2 ==============

result = data1*data2;

disp('A * B = ');

disp(result);

%==== save the new data to a new file ===========

SAVEPATH=strcat(pwd,filesep,'output');

if (~isdir(SAVEPATH))

mkdir(SAVEPATH);

end

SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

disp(['Save the A * B result to : ',SAVEFILENAME]);

save(SAVEFILENAME, 'result');

MATLAB Objects
When working with MATLAB objects, remember to include the following
statement in your MAT file:

%#function class_constructor

3-11

3 MATLAB® Code Guidelines

Using the %#function pragma in this manner forces the dependency analysis
to load needed class definitions, enabling the MCR to successfully load the
object.

3-12

4

Deploying Java Packages

• “Compile a Java Package with the Library Compiler App” on page 4-2

• “Compile a Java Package from the Command Line” on page 4-8

• “Map Functions to Java Class Methods” on page 4-10

4 Deploying Java® Packages

Compile a Java Package with the Library Compiler App
To compile MATLAB code into a Java package:

1 Open the Library Compiler.

a On the toolstrip select the Apps tab.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Library Compiler.

4-2

Compile a Java® Package with the Library Compiler App

4-3

4 Deploying Java® Packages

Note You can also start the shared library compiler using the
libraryCompiler function.

2 In the Application Type section of the toolstrip, select Java Package.

Note If the Application Type section of the toolstrip is collapsed, expand it
by clicking the down arrow.

3 Specify the MATLAB files you want deployed in the package.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed,
expand it by clicking the down arrow.

b In the file explorer that opens, locate and select one or more the MATLAB
files.

c Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button
appears below the plus button. The name of the first file listed is used as
the default application name and the default package name.

4 Verify that the function defined in the selected files are properly mapped
into classes.

4-4

Compile a Java® Package with the Library Compiler App

For more information, see “Map Functions to Java Class Methods” on page
4-10.

5 In the Packaging Options section of the toolstrip, specify how the installer
will deliver the MATLAB Compiler Runtime (MCR) with the package.

Note If the Packaging Options section of the toolstrip is collapsed, expand
it by clicking the down arrow.

You can select one or both of the following options:

• Runtime downloaded from web — Generates an installer that
downloads the MCR installer from the Web.

• Runtime included in package — Generates an installer that includes
the MCR installer.

Note Selecting both options creates two installers.

Regardless of the options selected the generated installer scans the target
system to determine if there is an existing installation of the appropriate
MCR. If there is not, the installer installs the MCR.

6 Specify the name of any generated installers.

4-5

4 Deploying Java® Packages

7 In the Application Information and Additional Installer Options
sections of the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used
by the installer:

• Splash screen

• Installer icon

• Package version

• Name and contact information of the package’s author

• Brief summary of the package’s purpose

• Detailed description of the package

You can also change the default location into which the package is installed
and provide some notes to the installer.

All of the provided information is displayed as the installer runs.

For more information, see “Customize the Installer” on page 5-2.

8 In the Files required for your application to run section of the compiler,
verify that the files required by the deployed MATLAB functions are listed.

Note These files are compiled into the generated binaries along with the
exported files.

In general, the built-in dependency checker will automatically populate this
section with the appropriate files. However, if needed you can manually add
any files it missed.

For more information, see “Manage Required Files in a Compiler Project”
on page 5-6.

9 In the Files installed with your application section of the compiler,
verify that any additional non-MATLAB files you want installed with the
application are listed.

4-6

Compile a Java® Package with the Library Compiler App

Note These files are placed in the applications folder of the installation.

This section automatically lists:

• Generated package

• doc folder containing the Javadoc for the generated classes

• Readme file

You can manually add files to the list. Additional files can include
documentation, sample data files, and examples to accompany the application.

For more information, see “Specify Files to Install with the Application” on
page 5-8.

10 Click the Settings button to customize the flags passed to the compiler and
the folders to which the generated files are written.

Note To create a package that uses a singleton MCR, pass the -S flag to
the compiler. For more information, see “Sharing an MCR Instance in COM
or Java Applications” on page 6-54.

11 Click the Package button to compile the MATLAB code and generate any
installers.

12 Verify that the generated output contains:

• for_redistribution— A folder containing the installer to distribute the
package

• for_testing — A folder containing the raw generated files to create the
installer

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the package

• PackagingLog.txt— A log file generated by the compiler

4-7

4 Deploying Java® Packages

Compile a Java Package from the Command Line

In this section...

“Execute Compiler Projects with deploytool” on page 4-8

“Compile a Java Package with mcc” on page 4-8

You can compile Java packages from both the MATLAB command line and
the system terminal command line:

• deploytool invokes the compiler to execute a presaved compiler project

• mcc invokes the raw compiler

Execute Compiler Projects with deploytool
The deploytool command has two flags to invoke the compiler without
opening a window:

• -build project_name— Invoke the compiler to build the project and do
not generate an installer.

• -package project_name — Invoke the compiler to build the project and
generate an installer.

For example, deploytool -package magicsqaure generates of the binary
files defined by the magicaqure project and packages them into an installer
that you can distribute to others.

Compile a Java Package with mcc
The mcc command invokes the raw compiler and provides fine-level control
over the compilation of the Java package. It, however, cannot package the
results in an installer.

To invoke the compiler to generate a Java package use the -W
java:packageName,className flag with mcc. This flag creates a Java
package named packageName. The package contains a class className with
methods for each of the provided MATLAB functions.

For compiling Java packages, you can also use the following options.

4-8

Compile a Java® Package from the Command Line

Compiler Java Options

Option Description

-a filePath Add any files on the path to the
generated binary.

-d outFolder Specify the folder into which the
results of compilation are written.

-S Specify that the generated classes
instantiate a singleton MCR.

class{className:mfilename...} Specify that an additional class is
generated that includes methods for
the listed MATLAB files.

4-9

4 Deploying Java® Packages

Map Functions to Java Class Methods

In this section...

“Use the Library Compiler App to Map Functions to Java Classes” on page
4-10

“Use mcc to Map Functions to Java Classes” on page 4-12

Use the Library Compiler App to Map Functions to
Java Classes
The library compiler presents a visual class mapper for mapping MATLAB
functions to Java classes. The class mapper is located between the
Application Information and the Additional Installer Options sections
of the interface.

The top field specifies the name of the package into which the generated
classes are placed. By default, the name of the first listed MATLAB file is
used as the package name. You can change the package name to fit the
naming conventions used by your organization.

The table used to match functions to classes is below the package name. The
Class Name column specifies the name of the generated Java class. The
Method Name column specifies the list of MATLAB functions that are
mapped into methods of the generated class.

Add a New Class to a Java Package
To add a class to a Java package:

4-10

Map Functions to Java® Class Methods

1 Click Add Class.

2 Rename the class as described in “Rename a Java Class” on page 4-11.

3 Add one or more methods to the class as described in “Add a Method to a Java
Class” on page 4-11.

Rename a Java Class
To rename a Java class:

1 Select the name of the class to be renamed.

2 Open the context menu.

3 Select Rename.

4 Enter the new class name.

The class name must follow the Java naming guidelines. It cannot contain
any special characters, dots, or spaces.

Delete a Class from a Java Package
To delete a class from a Java package:

1 Select the name of the class to be deleted.

2 Open the context menu.

3 Select Delete.

Add a Method to a Java Class
To add a Method to a Java class:

1 In theMethod Name column of the row for the class to which the method is
being added, click the plus button.

2 Select the name of the function to add.

4-11

4 Deploying Java® Packages

Delete a Method from a Java Class
To delete a method from a Java class:

1 Select the name of the function to be deleted.

2 Open the context menu.

3 Select Delete.

Tip You can also delete the method using the Delete key.

Use mcc to Map Functions to Java Classes
When using mcc to generate Java packages, you map your MATLAB
functions into Java classes based on the list into which they are placed on
the command line. Class groupings are specified by adding one or more
class{className:mfilename...} entries to the command line. All of the
files not specifically included in a class grouping are added to the class
specified by the -W java:packageName,className flag.

For example, mcc W java:myPackage,MyClass fun1.m fun2.m fun3.m
generates a Java package myPackage that contains a single class MyClass.
MyClass has three methods: fun1, fun2, and fun3.

However, mcc W java:myPackage,MyClass fun1.m fun2.m
class{MyOtherClass:fun3.m} generates a Java package myPackage that
contains two classes: MyClass and MyOtherClass. MyClass has two methods:
fun1 and fun2. MyOtherClass has one method fun3.

4-12

5

Customizing a Compiler
Project

• “Customize the Installer” on page 5-2

• “Manage Required Files in a Compiler Project” on page 5-6

• “Specify Files to Install with the Application” on page 5-8

• “Manage Support Packages” on page 5-9

5 Customizing a Compiler Project

Customize the Installer

In this section...

“Change the Application Icon” on page 5-2

“Add Application Information” on page 5-3

“Change the Splash Screen” on page 5-4

“Change the Installation Path” on page 5-4

“Change the Logo” on page 5-5

“Edit the Installation Notes” on page 5-5

Change the Application Icon
The application icon is used for the generated installer. For standalone
applications, it is also the application’s icon.

You can change the default icon in Application Information. To set a
custom icon:

1 Click the graphic to the left of the Application name field.

A window previewing the icon opens.

5-2

Customize the Installer

2 Click Select icon.

3 Using the file explorer, locate the graphic file to use as the application icon.

4 Select the graphic file.

5 Click OK to return to the icon preview.

6 Select Use mask to fill any blank spaces around the icon with white.

7 Select Use border to add a border around the icon.

8 Click Save and Use to return to the main compiler window.

Add Application Information
The Application Information section of the compiler app allows you to
provide these values:

• Name

Determines the name of the installed MATLAB components. For example,
if the name is foo, the installed executable would be foo.exe, the Windows
start menu entry would be foo. The folder created for the application
would be InstallRoot/foo.

The default value is the name of the first function listed in the Main
File(s) field of the compiler.

• Version

The default value is 1.0.

• Author name

• Support e-mail address

• Company name

Determines the full installation path for the installed MATLAB
components. For example, if the company name is bar, the full installation
path would be InstallRoot/bar/ApplicationName.

• Summary

• Description

5-3

5 Customizing a Compiler Project

This information is all optional and, unless otherwise stated, is only used for
display purposes. It appears on the first page of the installer. On Windows
systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

Change the Splash Screen
The installer’s splash screen displays after the installer is started. It is
displayed, along with a status bar, while the installer initializes.

You can change the default image by clicking the Select custom splash
screen link in Application Information. When the file explorer opens,
locate and select a new image.

Note You can drag and drop a custom image onto the default splash screen.

Change the Installation Path
Default Installation Paths on page 5-4 lists the default path the installer will
use when installing the compiled binaries onto a target system.

Default Installation Paths

Windows C:\Program
Files\companyName\appName

Mac OS X /Applications/companyName/appName

Linux /usr/companyName/appName

You can change the default installation path by editing the Default
installation folder field under Additional Installer Options.

The Default installation folder field has two parts:

• root folder — A drop down list that offers options for where the install
folder is installed. Custom Installation Roots on page 5-5 lists the optional
root folders for each platform.

5-4

Customize the Installer

Custom Installation Roots

Windows C:\Users\userName\AppData

Linux /usr/local

• install folder — A text field specifying the path appended to the root folder.

Change the Logo
The logo displays after the installer is started. It is displayed on the right
side of the installer.

You change the default image by clicking the Select custom logo link in
Additional Installer Options. When the file explorer opens, locate and
select a new image.

Note You can drag and drop a custom image onto the default logo.

Edit the Installation Notes
Installation notes are displayed once the installer has successfully installed
the packaged files on the target system. They can provide useful information
concerning any additional set up that is required to use the installed binaries
or simply provide instructions for how to run the application.

The field for editing the installation notes is in Additional Installer
Options.

5-5

5 Customizing a Compiler Project

Manage Required Files in a Compiler Project

In this section...

“Dependency Analysis” on page 5-6

“Using the Compiler Apps” on page 5-6

“Using mcc” on page 5-7

Dependency Analysis
The compiler uses a dependency analysis function to automatically determine
what additional MATLAB files are required for the application to compile and
run. These files are automatically compiled into the generated binary. The
compiler does not generate any wrapper code allowing direct access to the
functions defined by the required files.

Using the Compiler Apps
If you are using one of the compiler apps, the required files discovered by
the dependency analysis function are listed in the Files required by your
application to run field.

To add files:

1 Click the plus button in the field.

2 Select the desired file from the file explorer.

3 Click OK.

To remove files:

1 Select the desired file.

2 Press the Delete key.

Caution Removing files from the list of required files may cause your
application to not compile or to not run properly when deployed.

5-6

Manage Required Files in a Compiler Project

Using mcc
If you are using mcc to compile your MATLAB code, the compiler does not
display a list of required files before running. Instead, it compiles all of the
required files that are discovered by the dependency analysis function and
adds them to the generated binary file.

You can add files to the list by passing one, or more, -a arguments to mcc.
The -a arguments add the specified files to the list of files to be added into the
generated binary. For example, -a hello.m adds the file hello.m to the list
of required files and -a ./foo adds all of the files in foo, and its subfolders,
to the list of required files.

5-7

5 Customizing a Compiler Project

Specify Files to Install with the Application
The compiler apps package files to install along with the ones it generates. By
default the installer includes a readme file with instructions on installing the
MATLAB Compiler Runtine(MCR) and configuring it.

These files are listed in the Files installed with your application section
of the app.

to add files to the list:

1 Click the plus button in the field.

2 Select the desired file from the file explorer.

3 Click OK to close the file explorer.

To remove files from the list:

1 Select the desired file.

2 Press the Delete key.

Caution Removing the binary targets from the list results in an installer
that does not install the intended functionality.

When installed on a target computer, the files listed in the Files installed
with your application are placed in the application folder.

5-8

Manage Support Packages

Manage Support Packages
Many MATLAB toolboxes use support packages to interact with hardware
or to provide additional processing capabilities. If your MATLAB code uses
a toolbox with an installed support package, MATLAB Compiler displays a
Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code
requires. The list is determined using these criteria:

• the support package is installed

• your code has a direct dependency on the support package

• your code is dependent on the base product of the support package

5-9

5 Customizing a Compiler Project

• your code is dependent on at least one of the files listed as a dependency
in the mcc.xml file of the support package, and the base product of the
support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that MATLAB Compiler
cannot package. In this case, the compiler adds the information to the
installation notes. You can edit installation notes in the Additional Installer
Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you
deselect the support package.

5-10

6

Programming

• “How MATLAB® Builder™ JA Interacts with the JVM” on page 6-3

• “About the MATLAB® Builder™ JA API” on page 6-5

• “Importing Classes ” on page 6-10

• “Creating an Instance of the Class” on page 6-11

• “Passing Arguments to and from Java” on page 6-15

• “Passing Java Objects by Reference” on page 6-29

• “Handling Errors” on page 6-35

• “Managing MATLAB Resources” on page 6-42

• “Improving Data Access Using the MCR User Data Interface and
MATLAB® Builder™ JA” on page 6-45

• “Dynamically Specifying Run-Time Options to the MCR” on page 6-51

• “Sharing an MCR Instance in COM or Java Applications” on page 6-54

• “Handling Data Conversion Between Java and MATLAB” on page 6-56

• “Setting Java Properties” on page 6-58

• “Blocking Execution of a Console Application that Creates Figures” on
page 6-60

• “Ensuring Multi-Platform Portability” on page 6-63

• “CTF Archive Embedding and Extraction” on page 6-65

• “Learning About Java Classes and Methods by Exploring the Javadoc”
on page 6-70

6 Programming

Note For examples of these tasks, see the sample Java applications in
this documentation. See “Next Steps” on page 2-24 for a list of links to the
examples.

For information about deploying your application after you complete these
tasks, see “How Does Java Package Deployment Work?” on page 2-2.

6-2

How MATLAB® Builder™ JA Interacts with the JVM

How MATLAB Builder JA Interacts with the JVM
Packages produced by MATLAB Builder JA use Java Native Interface (JNI)
to interact with the MATLAB language runtime.

When the first MATLAB Builder JA object is instantiated:

1 Dependent MATLAB Builder JA classes are loaded.

2 A series of shared libraries forming the JNI bridge from the generated
package to the MATLAB language runtime are loaded.

3 The MATLAB language runtime is initialized by creating an instance of a
C++ class called mcrInstance.

4 The MATLAB-Java interface establishes a connection to the JVM by calling
the JNI method AttachCurrentThread.

5 AttachCurrentThread creates a class loader that loads all classes needed
by MATLAB code utilizing the MATLAB-Java interface.

6 The MATLAB language runtime’s C++ core allocates resources for the
arrays created by the Java API.

As you create MWArray objects to interact with the MATLAB language
runtime, the JVM creates a wrapper object for the MATLAB mxArray object.
The MATLAB language runtime’s C++ core allocates the actual resources
to store the mxArray object. This has an impact on how the JVM frees
up resources used by your application. Most of the resources used when
interacting with MATLAB are created by the C++ core of the MATLAB
language runtime. The JVM only knows about the MATLAB resources
through the JNI wrappers created for them. Because of this, the JVM does not
know the size of the resources being consumed and cannot effectively manage
them using its built in garbage collector. The JVM also does not manage the
threads used by the MATLAB language runtime and cannot clean them up.

All of the MATLAB Builder JA classes have static methods to properly
dispose of their resources. The disposal methods trigger the freeing of the
underlying resources in the MATLAB language runtime’s C++ core. Not

6-3

6 Programming

properly disposing of MATLAB Builder JA objects can result in unpredictable
behavior and may look like your application has a memory leak.

6-4

About the MATLAB® Builder™ JA API

About the MATLAB Builder JA API

In this section...

“What Are MATLAB Generated Java Packages and When Should You
Create Them?” on page 6-5

“Understanding the MATLAB® Builder™ JA API Data Conversion Classes”
on page 6-6

“Automatic Conversion to MATLAB Types” on page 6-7

“Understanding Function Signatures Generated by the MATLAB®

Builder™ JA Product” on page 6-8

“Adding Fields to Data Structures and Data Structure Arrays” on page 6-9

“Returning Data from MATLAB to Java” on page 6-9

What Are MATLAB Generated Java Packages and
When Should You Create Them?
MATLAB generated Java packages include one or more Java classes that
wrap your MATLAB functions. The classes provide methods that allow you
to call the functions as you would any other Java method. In addition, the
generated classes provide all of the functionality required to manage the MCR
required to run the MATLAB functions.

The builder encrypts your MATLAB functions and generates a Java wrapper
around them so that they behave just like any other Java class. You can
deploy generated packages to enterprise or Web environments, sharing them
with anyone running a Web browser and having the MATLAB Component
Runtime (MCR) installed.

For development on Linux platforms, Java packages and applications provide
portable and scalable solutions for applications in large-scale enterprise or
Web environments.

6-5

6 Programming

Understanding the MATLAB Builder JA API Data
Conversion Classes
When writing your Java application, you can represent your data using
objects of any of the data conversion classes. Alternatively, you can use
standard Java data types and objects.

The data conversion classes are built as a class hierarchy that represents the
major MATLAB array types.

Note This discussion provides conceptual information about the classes. For
details, see com.mathworks.toolbox.javabuilder.

This discussion assumes you have a working knowledge of the Java
programming language and the Java Software Developer’s Kit (SDK). This
is not intended to be a discussion on how to program in Java. Refer to the
documentation that came with your Java SDK for general programming
information.

Overview of Classes and Methods in the Data Conversion
Class Hierarchy
The root of the data conversion class hierarchy is the MWArray abstract
class. The MWArray class has the following subclasses representing the
major MATLAB types: MWNumericArray, MWLogicalArray, MWCharArray,
MWCellArray, and MWStructArray.

Each subclass stores a reference to a native MATLAB array of that type.
Each class provides constructors and a basic set of methods for accessing
the underlying array’s properties and data. To be specific, MWArray and the
classes derived from MWArray provide the following:

• Constructors and finalizers to instantiate and dispose of MATLAB arrays

• get and set methods to read and write the array data

• Methods to identify properties of the array

• Comparison methods to test the equality or order of the array

6-6

About the MATLAB® Builder™ JA API

• Conversion methods to convert to other data types

Advantage of Using Data Conversion Classes
The MWArray data conversion classes let you pass native type parameters
directly without using explicit data conversion. If you pass the same array
frequently, you might improve the performance of your program by storing
the array in an instance of one of the MWArray subclasses.

Automatic Conversion to MATLAB Types

Note Because the conversion process is automatic (in most cases), you do not
need to understand the conversion process to pass and return arguments with
MATLAB Builder JA generated methods.

When you pass an MWArray instance as an input argument, the encapsulated
MATLAB array is passed directly to the method being called.

In contrast, if your code uses a native Java primitive or array as an input
parameter, the builder converts it to an instance of the appropriate MWArray
class before it is passed to the method. The builder can convert any Java
string, numeric type, or any multidimensional array of these types to an
appropriate MWArray type, using its data conversion rules. See “Data
Conversion Rules” on page 12-4 for a list of all the data types that are
supported along with their equivalent types in MATLAB.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

Note To work directly with cell arrays and data structures in native Java,
see “Use Native Java with Cell Arrays and Struct Arrays” on page 10-9 for
information and comprehensive examples.

6-7

6 Programming

Understanding Function Signatures Generated by the
MATLAB Builder JA Product
The Java programming language now supports optional function arguments
in the way that MATLAB does with varargin and varargout. To support this
feature of MATLAB, the builder generates a single overloaded Java method
that accommodates any number of input arguments. This behavior is an
enhancement over previous versions of varargin support that only handled a
limited number of arguments.

Note In addition to handling optional function arguments, the overloaded
Java methods that wrap MATLAB functions handle data conversion. See
“Automatic Conversion to MATLAB Types” on page 6-7 for more details.

Understanding MATLAB Function Signatures
As background, recall that the generic MATLAB function has the following
structure:

function [Out1, Out2, ..., varargout]=
foo(In1, In2, ..., varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

Each argument represents a MATLAB type. When you include the varargin
or varargout argument, you can specify any number of inputs or outputs
beyond the ones that are explicitly declared.

Overloaded Methods in Java That Encapsulate MATLAB Code
When the MATLAB Builder JA product encapsulates your MATLAB code, it
creates an overloaded method that implements the MATLAB functions. This
overloaded method corresponds to a call to the generic MATLAB function for
each combination of the possible number and type of input arguments.

6-8

About the MATLAB® Builder™ JA API

In addition to encapsulating input arguments, the builder creates another
method, which represents the output arguments, or return values, of the
MATLAB function. This additional overloaded method takes care of return
values for the encapsulated MATLAB function. This method of encapsulating
the information about return values simulates the mlx interface in the
MATLAB Compiler product.

These overloaded methods are called the standard interface (encapsulating
input arguments) and the mlx interface (encapsulating return values). See
“Programming Interfaces Generated by the MATLAB® Builder™ JA Product”
on page 12-8 for details.

Adding Fields to Data Structures and Data Structure
Arrays
When adding fields to data structures and data structure arrays, do so
using standard programming techniques. Do not use the set command as a
shortcut.

For examples of how to correctly add fields to data structures and data
structure arrays, see the programming examples in this documentation. For a
table of links, see “Next Steps” on page 2-24.

Returning Data from MATLAB to Java
All data returned from a method coded in MATLAB is passed as an instance
of the appropriate MWArray subclass. For example, a MATLAB cell array is
returned to the Java application as an MWCellArray object.

Return data is not converted to a Java type. If you choose to use a Java type,
you must convert to that type using the toArray method of the MWArray
subclass to which the return data belongs.

Note To work directly with cell arrays and data structures in native Java,
see “Use Native Java with Cell Arrays and Struct Arrays” on page 10-9 for
information and comprehensive examples.

6-9

6 Programming

Importing Classes
To use a package generated by the MATLAB Builder JA product:

1 Import MATLAB libraries with the Java import function, for example:

import com.mathworks.toolbox.javabuilder.*;

2 Import the classes created by the builder, for example:

import packagename.classname;

Note When you use the MATLAB Builder JA product to create classes,
you must create those classes on the same operating system to which you
are deploying them for development (or for use by end users running an
application). For example, if your goal is to deploy an application to end users
to run on Windows, you must create the Java classes with the MATLAB
Builder JA product running on Windows.

The reason for this limitation is that although the .jar file itself might be
platform independent, the .jar file is dependent on the embedded .ctf file,
which is intrinsically platform dependent. It is possible to make your .ctf file
platform independent in certain circumstances; see “Ensuring Multi-Platform
Portability” on page 6-63 for more details.

6-10

Creating an Instance of the Class

Creating an Instance of the Class

In this section...

“What Is an Instance?” on page 6-11

“Instantiate a Java Class” on page 6-11

What Is an Instance?
With a MATLAB Java class, it is necessary first to create an instance of the
class, since the methods are non-static.

Suppose you build a package named MyComponent with a class named
MyClass. Here is an example of creating an instance of the MyClass class:

MyClass instance = new MyClass();

Instantiate a Java Class
The following Java code shows how to create an instance of a class that
was built with MATLAB Builder JA. The application uses a Java class that
encapsulates a MATLAB function, myprimes.

/*
* useMyClass.java uses myClass
*/

/* Import all com.mathworks.toolbox.javabuilder classes */
import com.mathworks.toolbox.javabuilder.*;

/* Import all com.mycompany.mycomponent classes */
import com.mycompany.mycomponent.*;

/*
* useMyClass
*/

public class useMyClass
{

/** Constructs a new useMyClass */
public useMyClass()

6-11

6 Programming

{
super();

}

/* Returns an array containing the primes between 0 and n */
public double[] getPrimes(int n) throws MWException
{

myClass Class = null;
Object[] y = null;

try
{

Class = new myClass ();
y = Class.myPrimes(1, new Double((double)n));
/* The above signature returns outputs in an

object array. You must know the output
type to know what type to cast. */

return (double[])((MWArray)y[0]).getData();
}

catch (MWException e) {
// something went wrong while
// initializing the class - the
// MWException's message contains more information

}

finally
{

MWArray.disposeArray(y);
if (Class != null)

Class.dispose();
}

}
}

The import statements import packages that define all the classes the
program requires. These classes are defined in javabuilder.* and
mycomponent.*; the latter defines the class myClass.

The following statement instantiates the class myclass:

6-12

Creating an Instance of the Class

Class = new myClass();

The following statement calls the class method myprimes:

y = Class.myPrimes(1, new Double((double)n));

The sample code passes a java.lang.Double to the myPrimes method. The
java.lang.Double is automatically converted to the double data type
required by the encapsulated MATLAB myPrimes function.

When myPrimes executes, it finds all prime numbers between 0 and the input
value and returns them in a MATLAB double array. This array is returned
to the Java program as an MWNumericArray with its MWClassID property set
to MWClassID.DOUBLE.

The myPrimes method encapsulates the myPrimes function.

myPrimes Function
The code for myPrimes is as follows:

function p = myPrimes(n)
% MYPRIMES Returns the primes between 0 and n.
% P = MYPRIMES(N) Returns the primes between 0 and n.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2010 The MathWorks, Inc.

if length(n) ~= 1
error('N must be a scalar');

end

if n < 2
p = zeros(1,0);
return

end

p = 1:2:n;
q = length(p);
p(1) = 2;

6-13

6 Programming

for k = 3:2:sqrt(n)
if p((k+1)/2)

p(((k*k+1)/2):k:q) = 0;
end

end

p = (p(p>0));

6-14

Passing Arguments to and from Java®

Passing Arguments to and from Java

In this section...

“Format” on page 6-15

“Manual Conversion of Data Types” on page 6-15

“Automatic Conversion to a MATLAB Type” on page 6-16

“Specifying Optional Arguments” on page 6-18

“Handling Return Values” on page 6-23

Format
When you invoke a method on a generated class, the input arguments
received by the method must be in the MATLAB internal array format. You
can either convert them yourself within the calling program, or pass the
arguments as Java data types, which are then automatically converted by
the calling mechanism.

To convert them yourself, use instances of the MWArray classes; in this case
you are using manual conversion. Storing your data using the classes and
data types defined in the Java language means that you are relying on
automatic conversion. Most likely, you will use a combination of manual and
automatic conversion.

Manual Conversion of Data Types
To manually convert to one of the standard MATLAB data types, use the
MWArray data conversion classes provided by the builder. For class reference
and usage information, see the com.mathworks.toolbox.javabuilder
package.

Using MWNumericArray
The Magic Square example (“Integrating a Generated Java Package into a
Java Application” on page 2-13) exemplifies manual conversion. The following
code fragment from that program shows a java.lang.Double argument that
is converted to an MWNumericArray type that can be used by the MATLAB
function without further conversion:

6-15

6 Programming

n = new MWNumericArray(Double.valueOf(args[0]),
MWClassID.DOUBLE);

theMagic = new Class1();

result = theMagic.makesqr(1, n);

Passing an MWArray. This example constructs an MWNumericArray of type
MWClassID.DOUBLE. The call to myprimes passes the number of outputs, 1,
and the MWNumericArray, x:

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

MATLAB Builder JA product converts the MWNumericArray object to a
MATLAB scalar double to pass to the MATLAB function.

Automatic Conversion to a MATLAB Type
When passing an argument only a small number of times, it is usually just
as efficient to pass a primitive Java type or object. In this case, the calling
mechanism converts the data for you into an equivalent MATLAB type.

For instance, either of the following Java types would be automatically
converted to the MATLAB double type:

• A Java double primitive

• An object of class java.lang.Double

For reference information about data conversion (tables showing each Java
type along with its converted MATLAB type, and each MATLAB type with its
converted Java type), see “Data Conversion Rules” on page 12-4.

Automatic Data Conversion
When calling the makesqrmethod used in the getmagic application, you could
construct an object of type MWNumericArray. Doing so would be an example
of manual conversion. Instead, you could rely on automatic conversion, as
shown in the following code fragment:

6-16

Passing Arguments to and from Java®

result = M.makesqr(1, arg[0]);

In this case, a Java double is passed as arg[0].

Here is another example:

result = theFourier.plotfft(3, data, new Double(interval));

In this Java statement, the third argument is of type java.lang.Double.
According to conversion rules, the java.lang.Double automatically converts
to a MATLAB 1-by-1 double array.

Passing a Java Double Object
The example calls the myprimes method with two arguments. The first
specifies the number of arguments to return. The second is an object of class
java.lang.Double that passes the one data input to myprimes.

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));

This second argument is converted to a MATLAB 1-by-1 double array, as
required by the MATLAB function. This is the default conversion rule for
java.lang.Double.

Passing an MWArray
This example constructs an MWNumericArray of type MWClassID.DOUBLE. The
call to myprimes passes the number of outputs, 1, and the MWNumericArray, x.

x = new MWNumericArray(n, MWClassID.DOUBLE);
cls = new myclass();
y = cls.myprimes(1, x);

builder converts the MWNumericArray object to a MATLAB scalar double to
pass to the MATLAB function.

6-17

6 Programming

Calling MWArray Methods
The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

For example, the following code fragment calls the constructor for the
MWNumericArray class with a Java double as the input argument:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

The builder converts the input argument to an instance of MWNumericArray,
with a ClassID property of MWClassID.DOUBLE. This MWNumericArray object
is the equivalent of a MATLAB 1-by-1 double array.

When you run this example, the result is as follows:

Array A is of type double

Changing the Default by Specifying the Type
When calling an MWArray class method constructor, supplying a specific data
type causes the MATLAB Builder JA product to convert to that type instead
of the default.

For example, in the following code fragment, the code specifies that A should
be constructed as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the result is as follows:

Array A is of type int16

Specifying Optional Arguments
So far, the examples have not used MATLAB functions that have varargin or
varargout arguments. Consider the following MATLAB function:

6-18

Passing Arguments to and from Java®

function y = mysum(varargin)
% MYSUM Returns the sum of the inputs.
% Y = MYSUM(VARARGIN) Returns the sum of the inputs.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2010 The MathWorks, Inc.

y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a
varargin argument, which means that the caller can specify any number of
inputs to the function. The result is returned as a scalar double.

Passing Variable Numbers of Inputs
The MATLAB Builder JA product generates a Java interface to this function
as follows:

/* mlx interface - List version*/
public void mysum(List lhs, List rhs)

throws MWException
{

(implementation omitted)
}
/* mlx interface - Array version*/
public void mysum(Object[] lhs, Object[] rhs)

throws MWException
{

(implementation omitted)
}

/* standard interface - no inputs */
public Object[] mysum(int nargout) throws MWException
{

(implementation omitted)
}

/* standard interface - variable inputs */
public Object[] mysum(int nargout, Object varargin)

6-19

6 Programming

throws MWException
{

(implementation omitted)
}

In all cases, the varargin argument is passed as type Object. This lets
you provide any number of inputs in the form of an array of Object, that is
Object[], and the contents of this array are passed to the compiled MATLAB
function in the order in which they appear in the array. Here is an example of
how you might use the mysum method in a Java program:

public double getsum(double[] vals) throws MWException
{

myclass cls = null;
Object[] x = {vals};
Object[] y = null;

try
{

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

In this example, an Object array of length 1 is created and initialized with
a reference to the supplied double array. This argument is passed to the
mysum method. The result is known to be a scalar double, so the code returns
this double value with the statement:

return ((MWNumericArray)y[0]).getDouble(1);

6-20

Passing Arguments to and from Java®

Cast the return value to MWNumericArray and invoke the getDouble(int)
method to return the first element in the array as a primitive double value.

Passing Array Inputs. The next example performs a more general
calculation:

public double getsum(Object[] vals) throws MWException
{

myclass cls = null;
Object[] x = null;
Object[] y = null;

try
{

x = new Object[vals.length];
for (int i = 0; i < vals.length; i++)

x[i] = new MWNumericArray(vals[i], MWClassID.DOUBLE);

cls = new myclass();
y = cls.mysum(1, x);
return ((MWNumericArray)y[0]).getDouble(1);

}
finally
{

MWArray.disposeArray(x);
MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

This version of getsum takes an array of Object as input and converts each
value to a double array. The list of double arrays is then passed to the mysum
function, where it calculates the total sum of each input array.

Passing a Variable Number of Outputs
When present, varargout arguments are handled in the same way that
varargin arguments are handled. Consider the following MATLAB function:

function varargout = randvectors

6-21

6 Programming

% RANDVECTORS Returns a list of random vectors.
% VARARGOUT = RANDVECTORS Returns a list of random
% vectors such that the length of the ith vector = i.
% This file is used as an example for the MATLAB
% Builder for Java product.

% Copyright 2001-2010 The MathWorks, Inc.

for i=1:nargout
varargout{i} = rand(1, i);

end

This function returns a list of random double vectors such that the length of
the ith vector is equal to i. The MATLAB Compiler product generates a Java
interface to this function as follows:

/* mlx interface - List version */
public void randvectors(List lhs, List rhs) throws MWException

{
(implementation omitted)

}
/* mlx interface Array version */
public void randvectors(Object[] lhs,

Object[] rhs) throws MWException
{

(implementation omitted)
}
/* Standard interface no inputs*/
public Object[] randvectors(int nargout) throws MWException
{

(implementation omitted)
}

Passing Optional Arguments with the Standard Interface. Here is one
way to use the randvectors method in a Java program:

public double[][] getrandvectors(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

6-22

Passing Arguments to and from Java®

try
{

cls = new myclass();
y = cls.randvectors(n);
double[][] ret = new double[y.length][];

for (int i = 0; i < y.length; i++)
ret[i] = (double[])((MWArray)y[i]).getData();

return ret;
}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The getrandvectors method returns a two-dimensional double array with
a triangular structure. The length of the ith row equals i. Such arrays are
commonly referred to as jagged arrays. Jagged arrays are easily supported in
Java because a Java matrix is just an array of arrays.

Handling Return Values
The previous examples used the fact that you knew the type and
dimensionality of the output argument. In the case that this information is
unknown, or can vary (as is possible in MATLAB programming), the code
that calls the method might need to query the type and dimensionality of
the output arguments.

There are several ways to do this. Do one of the following:

• Use reflection support in the Java language to query any object for its type.

• Use several methods provided by the MWArray class to query information
about the underlying MATLAB array.

• Coercing to a specific type using the toTypeArray methods.

6-23

6 Programming

Using Java Reflection
This code sample calls the myprimes method, and then determines the type
using reflection. The example assumes that the output is returned as a
numeric matrix but the exact numeric type is unknown.

public void getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
Object a = ((MWArray)y[0]).toArray();

if (a instanceof double[][])
{

double[][] x = (double[][])a;

/* (do something with x...) */
}

else if (a instanceof float[][])
{

float[][] x = (float[][])a;

/* (do something with x...) */
}

else if (a instanceof int[][])
{

int[][] x = (int[][])a;

/* (do something with x...) */
}

else if (a instanceof long[][])
{

long[][] x = (long[][])a;

6-24

Passing Arguments to and from Java®

/* (do something with x...) */
}

else if (a instanceof short[][])
{

short[][] x = (short[][])a;

/* (do something with x...) */
}

else if (a instanceof byte[][])
{

byte[][] x = (byte[][])a;

/* (do something with x...) */
}

else
{

throw new MWException(
"Bad type returned from myprimes");

}
}

This example uses the toArray method to return a Java primitive array
representing the underlying MATLAB array. The toArray method works just
like getData in the previous examples, except that the returned array has the
same dimensionality as the underlying MATLAB array.

Using MWArray Query
The next example uses the MWArray classID method to determine the type
of the underlying MATLAB array. It also checks the dimensionality by
calling numberOfDimensions. If any unexpected information is returned, an
exception is thrown. It then checks the MWClassID and processes the array
accordingly.

public void getprimes(int n) throws MWException
{

6-25

6 Programming

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
MWClassID clsid = ((MWArray)y[0]).classID();

if (!clsid.isNumeric() ||
((MWArray)y[0]).numberOfDimensions() != 2)

{
throw new MWException("Bad type

returned from myprimes");
}

if (clsid == MWClassID.DOUBLE)
{

double[][] x = (double[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.SINGLE)
{

float[][] x = (float[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT32 ||
clsid == MWClassID.UINT32)

{
int[][] x = (int[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT64 ||
clsid == MWClassID.UINT64)

6-26

Passing Arguments to and from Java®

{
long[][] x = (long[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT16 ||
clsid == MWClassID.UINT16)

{
short[][] x = (short[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

else if (clsid == MWClassID.INT8 ||
clsid == MWClassID.UINT8)

{
byte[][] x = (byte[][])((MWArray)y[0]).toArray();

/* (do something with x...) */
}

}
finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Using toType Array Methods
The next example demonstrates how you can coerce or force data to a specified
numeric type by invoking any of the toTypeArray methods. These methods
return an array of Java types matching the primitive type specified in the
name of the called method. The data is coerced or forced to the primitive type
specified in the method name. Note that when using these methods, data will
be truncated when needed to allow conformance to the specified data type.

6-27

6 Programming

Object results = null;
try {

// call a compiled MATLAB function
results = myobject.myfunction(2);

// first output is known to be a numeric matrix
MWArray resultA = (MWNumericArray) results[0];

double[][] a = (double[][]) resultA.toDoubleArray();

// second output is known to be
// a 3-dimensional numeric array
MWArray resultB = (MWNumericArray) results[1];

Int[][][] b = (Int[][][]) resultB.toIntArray();
}
finally {

MWArray.disposeArray(results);
}

6-28

Passing Java® Objects by Reference

Passing Java Objects by Reference

In this section...

“MATLAB Array” on page 6-29

“Wrappering and Passing Java Objects to MATLAB Functions with
MWJavaObjectRef” on page 6-29

MATLAB Array
MWJavaObjectRef, a special subclass of MWArray, can be used to create a
MATLAB array that references Java objects. For detailed usage information
on this class, constructor, and associated methods, see the MWJavaObjectRef
page in the Javadoc or search for MWJavaObjectRef in the MATLAB Help
browser Search field.

You can find the Javadoc at matlabroot/help/javabuilder/MWArrayAPI
in your product installation.

Wrappering and Passing Java Objects to MATLAB
Functions with MWJavaObjectRef
You can create a MATLAB code wrapper around Java objects using
MWJavaObjectRef. Using this technique, you can pass objects by reference to
MATLAB functions, clone a Java object inside a generated package, as well as
perform other object marshaling specific to the MATLAB Compiler product.
The examples in this section present some common use cases.

Passing a Java Object into a MATLAB Builder JA Method
To pass an object into a MATLAB Builder JA method:

1 Use MWJavaObjectRef to wrap your object.

2 Pass your object to a MATLAB function. For example:

/* Create an object */

java.util.Hashtable<String,Integer> hash =

new java.util.Hashtable<String,Integer>();

6-29

../MWArrayAPI/com/mathworks/toolbox/javabuilder/MWJavaObjectRef.html

6 Programming

hash.put("One", 1);

hash.put("Two", 2);

System.out.println("hash: ");

System.out.println(hash.toString());

/* Create a MWJavaObjectRef to wrap this object */

origRef = new MWJavaObjectRef(hash);

/* Pass it to an MATLAB function that lists its methods, etc */

result = theComponent.displayObj(1, origRef);

MWArray.disposeArray(origRef);

For reference, here is the source code for displayObj.m:

displayObj.m.

function className = displayObj(h)

disp('---------------------------');
disp('Entering MATLAB function')
h
className = class(h)
whos('h')
methods(h)

disp('Leaving MATLAB function')
disp('---------------------------');

Cloning an Object
You can also use MWJavaObjectRef to clone an object. Continuing with the
example in “Passing a Java Object into a MATLAB® Builder™ JA Method” on
page 6-29, do the following:

1 Add to the original hash.

2 Clone the object.

3 (Optional) Continue to add items to each copy. For example:

6-30

Passing Java® Objects by Reference

origRef = new MWJavaObjectRef(hash);

System.out.println("hash:");

System.out.println(hash.toString());

result = theComponent.addToHash(1, origRef);

outputRef = (MWJavaObjectRef)result[0];

/* We can typecheck that the reference contains a */

/* Hashtable but not <String,Integer>; */

/* this can cause issues if we get a Hashtable<wrong,wrong>. */

java.util.Hashtable<String, Integer> outHash =

(java.util.Hashtable<String,Integer>)(outputRef.get());

/* We've added items to the original hash, cloned it, */

/* then added items to each copy */

System.out.println("hash:");

System.out.println(hash.toString());

System.out.println("outHash:");

System.out.println(outHash.toString());

For reference, here is the source code for addToHash.m:

addToHash.m.

function h2 = addToHash(h)

%ADDTOHASH Add elements to a java.util.Hashtable<String, Integer>

% This file is used as an example for the

% MATLAB Builder JA product.

% Copyright 2001-2010 The MathWorks, Inc.

% Validate input

if ~isa(h,'java.util.Hashtable')

error('addToHash:IncorrectType', ...

'addToHash expects a java.util.Hashtable');

end

% Add an item

h.put('From MATLAB',12);

% Clone the Hashtable and add items to both resulting objects

6-31

6 Programming

h2 = h.clone();

h.put('Orig',20);

h2.put('Clone',21);

Passing a Date into a Method and Getting a Date from a
Method
In addition to passing in created objects, as in “Passing a Java Object
into a MATLAB® Builder™ JA Method” on page 6-29, you can also use
MWJavaObjectRef to pass in Java utility objects such as java.util.date. To
do so, perform the following steps:

1 Get the current date and time using the Java object java.util.date.

2 Create an instance of MWJavaObjectRef in which to wrap the Java object.

3 Pass it to an MATLAB function that performs further processing, such as
nextWeek.m. For example:

/* Get the current date and time */

java.util.Date nowDate = new java.util.Date();

System.out.println("nowDate:");

System.out.println(nowDate.toString());

/* Create a MWJavaObjectRef to wrap this object */

origRef = new MWJavaObjectRef(nowDate);

/* Pass it to a MATLAB function that calculates one week */

/* in the future */

result = theComponent.nextWeek(1, origRef);

outputRef = (MWJavaObjectRef)result[0];

java.util.Date nextWeekDate =

(java.util.Date)outputRef.get();

System.out.println("nextWeekDate:");

System.out.println(nextWeekDate.toString());

For reference, here is the source code for nextWeek.m:

6-32

Passing Java® Objects by Reference

nextWeek.m.

function nextWeekDate = nextWeek(nowDate)

%NEXTWEEK Given one Java Date, calculate another

% one week in the future

% This file is used as an example for the

% MATLAB Builder JA product.

% Copyright 2001-2010 The MathWorks, Inc.

% Validate input

if ~isa(nowDate,'java.util.Date')

error('nextWeekDate:IncorrectType', ...

'nextWeekDate expects a java.util.Date');

end

% Use java.util.Calendar to calculate one week later

% than the supplied

% java.util.Date

cal = java.util.Calendar.getInstance();

cal.setTime(nowDate);

cal.add(java.util.Calendar.DAY_OF_MONTH, 7);

nextWeekDate = cal.getTime();

Returning Java Objects Using unwrapJavaObjectRefs
If you want actual Java objects returned from a method (without the MATLAB
wrappering), use unwrapJavaObjectRefs.

This method recursively connects a single MWJavaObjectRef or a
multidimensional array of MWJavaObjectRef objects to a reference or array
of references.

The following code snippets show two examples of calling
unwrapJavaObjectRefs:

Returning a Single Reference or Reference to an Array of Objects
with unwrapJavaObjectRefs.

Hashtable<String,Integer> myHash =
new Hashtable<String,Integer>();

6-33

6 Programming

myHash.put("a", new Integer(3));
myHash.put("b", new Integer(5));
MWJavaObjectRef A =

new MWJavaObjectRef(new Integer(12));
System.out.println("A referenced the object: "

+ MWJavaObjectRef.unwrapJavaObjectRefs(A));

MWJavaObjectRef B = new MWJavaObjectRef(myHash);
Object bObj = (Object)B;
System.out.println("B referenced the object: "

+ MWJavaObjectRef.unwrapJavaObjectRefs(bObj))

Produces the following output:

A referenced the object: 12
B referenced the object: {b=5, a=3}

Returning an Array of References with unwrapJavaObjectRefs.

MWJavaObjectRef A =
new MWJavaObjectRef(new Integer(12));

MWJavaObjectRef B =
new MWJavaObjectRef(new Integer(104));

Object[] refArr = new Object[2];
refArr[0] = A;
refArr[1] = B;
Object[] objArr =

MWJavaObjectRef.unwrapJavaObjectRefs(refArr);
System.out.println("refArr referenced the objects: " +

objArr[0] + " and " + objArr[1]);

Produces the following output:

refArr referenced the objects: 12 and 104

Optimization Example Using MWJavaObjectRef
For a full example of how to use MWJavaObjectRef to create a reference to a
Java object and pass it to a method, see “Optimization” on page 7-36.

6-34

Handling Errors

Handling Errors

In this section...

“Error Overview” on page 6-35

“Handling Checked Exceptions” on page 6-35

“Handling Unchecked Exceptions” on page 6-38

“Alternatives to Using of System.exit” on page 6-41

Error Overview
Errors that occur during execution of a MATLAB function or during data
conversion are signaled by a standard Java exception. This includes MATLAB
run-time errors as well as errors in your MATLAB code.

In general, there are two types of exceptions in Java: checked exceptions
and unchecked exceptions.

Handling Checked Exceptions
Checked exceptions must be declared as thrown by a method using the throws
clause. MATLAB Builder JA components support one checked exception:
com.mathworks.toolbox.javabuilder.MWException. This exception class
inherits from java.lang.Exception and is thrown by every MATLAB
Compiler generated Java method to signal that an error has occurred during
the call. All normal MATLAB run-time errors, as well as user-created errors
(e.g., a calling error in your MATLAB code) are manifested as MWExceptions.

The Java interface to each MATLAB function declares itself as throwing an
MWException using the throws clause. For example, the myprimes MATLAB
function shown previously has the following interface:

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */
public void myprimes(Object[] lhs, Object[] rhs)

6-35

6 Programming

throws MWException
{

(implementation omitted)
}

/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/
public Object[] myprimes(int nargout, Object n)

throws MWException
{

(implementation omitted)
}

Any method that calls myprimes must do one of two things:

• Catch and handle the MWException.

• Allow the calling program to catch it.

The following two sections provide examples of each.

Handling an Exception in the Called Function
The getprimes example shown here uses the first of these methods. This
method handles the exception itself, and does not need to include a throws
clause at the start.

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

6-36

Handling Errors

/* Catches the exception thrown by myprimes */
catch (MWException e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Note that in this case, it is the programmer’s responsibility to return
something reasonable from the method in case of an error.

The finally clause in the example contains code that executes after all other
processing in the try block is executed. This code executes whether or not an
exception occurs or a control flow statement like return or break is executed.
It is common practice to include any cleanup code that must execute before
leaving the function in a finally block. The documentation examples use
finally blocks in all the code samples to free native resources that were
allocated in the method.

For more information on freeing resources, see “Managing MATLAB
Resources” on page 6-42.

Handling an Exception in the Calling Function
In this next example, the method that calls myprimes declares that it throws
an MWException:

public double[] getprimes(int n) throws MWException
{

myclass cls = null;
Object[] y = null;

6-37

6 Programming

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

finally
{

MWArray.disposeArray(y);
if (cls != null)
cls.dispose();

}
}

Handling Unchecked Exceptions
Several types of unchecked exceptions can also occur during the course of
execution. Unchecked exceptions are Java exceptions that do not need to be
explicitly declared with a throws clause. The MWArray API classes all throw
unchecked exceptions.

All unchecked exceptions thrown by MWArray and its subclasses are subclasses
of java.lang.RuntimeException. The following exceptions can be thrown
by MWArray:

• java.lang.RuntimeException

• java.lang.ArrayStoreException

• java.lang.NullPointerException

• java.lang.IndexOutOfBoundsException

• java.lang.NegativeArraySizeException

This list represents the most likely exceptions. Others might be added in
the future.

6-38

Handling Errors

Catching General Exceptions
You can easily rewrite the getprimes example to catch any exception that
can occur during the method call and data conversion. Just change the catch
clause to catch a general java.lang.Exception.

public double[] getprimes(int n)
{

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by anyone */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

Catching Multiple Exception Types
This second, and more general, variant of this example differentiates between
an exception generated in a compiled method call and all other exception
types by introducing two catch clauses as follows:

public double[] getprimes(int n)
{

6-39

6 Programming

myclass cls = null;
Object[] y = null;

try
{

cls = new myclass();
y = cls.myprimes(1, new Double((double)n));
return (double[])((MWArray)y[0]).getData();

}

/* Catches the exception thrown by myprimes */
catch (MWException e)
{

System.out.println("Exception in MATLAB call: " +
e.toString());

return new double[0];
}

/* Catches all other exceptions */
catch (Exception e)
{

System.out.println("Exception: " + e.toString());
return new double[0];

}

finally
{

MWArray.disposeArray(y);
if (cls != null)

cls.dispose();
}

}

The order of the catch clauses here is important. Because MWException is a
subclass of Exception, the catch clause for MWException must occur before
the catch clause for Exception. If the order is reversed, the MWException
catch clause will never execute.

6-40

Handling Errors

Alternatives to Using of System.exit
Any Java application that uses a class generated using MATLAB Builder JA
should avoid any direct or indirect calls to System.exit.

Any direct or indirect call to System.exit will result in the JVM shutting
down in an abnormal fashion. This may result in system deadlocks.

Using System.exit also causes the java process to exit unpredictably.

Java programs using Swing components are most likely to invoke
System.exit. Here are a few ways to avoid it:

• Use public interface WindowConstants.DISPOSE_ON_CLOSE method as an
alternative to WindowConstants.EXIT_ON_CLOSE as input to the JFrame
class setDefaultCloseOperation method.

• If you want to provide an Exit button in your GUI that terminates your
application, instead of calling System.exit in the ActionListener for the
button, call the dispose method on JFrame.

6-41

6 Programming

Managing MATLAB Resources

In this section...

“Why MATLAB Resources Need to be Managed” on page 6-42

“Creating MATLAB Objects” on page 6-42

“Disposing of MATLAB Objects” on page 6-43

Why MATLAB Resources Need to be Managed
MATLAB Builder JA is primarily a Java Native Interface (JNI) wrapper
connecting your Java application to the C++ MATLAB language runtime.
As a result, most of the resources consumed by the MATLAB Builder JA
portions of your Java application are created by the MATLAB language
runtime. Resource created by the MATLAB language runtime are not visible
to the JVM. The JVM’s garbage collector cannot effectively manage resources
that it cannot see.

All of the MATLAB Builder JA classes have hooks that free the MATLAB
resources when the JVM garbage collects the wrapper objects. However, the
JVM’s garbage collection is unreliable because the JVM only sees the small
wrapper object. The garbage collector can decide that it is not worth wasting
CPU cycles to actually delete the wrapper object. Until the Java wrapper
object is deleted, the resources allocated in the MATLAB language runtime
are also not deleted. This behavior can result in conditions that look like
memory leaks and rapidly consume resources.

To avoid this situation:

• Never create anonymous MATLAB objects.

• Always dispose of MATLAB objects using their dispose() method.

Creating MATLAB Objects
All of the MATLAB objects supported by MATLAB Builder JA have standard
Java constructors as described in the com.mathworks.toolbox.javabuilder
Javadoc.

6-42

http://www.mathworks.com/help/javabuilder/MWArrayAPI/index.html?com/mathworks/toolbox/javabuilder/package-summary.html
http://www.mathworks.com/help/javabuilder/MWArrayAPI/index.html?com/mathworks/toolbox/javabuilder/package-summary.html

Managing MATLAB® Resources

When creating MATLAB objects, always assign them names. To create
a 5x5 cell array:

MWCellArray myCA = new MWCellArray(5, 5);

The Java object myCA is a wrapper that points to a 5x5 mxCellArray object in
the MATLAB language runtime. myCA can be added to other MATLAB arrays
or manipulated in your Java application. When you are finished with myCA,
you can clean up the 5x5 mxCellArray using the object’s dispose() method.

The semantics of the API allows you create anonymous MATLAB objects
and store them in named MATLAB objects, but you should never do this in
practice. You have no way to manage the MATLAB resources created by the
anonymous MATLAB object.

The following code creates a MATLAB array, data, and populates it with an
anonymous MATLAB object:

MWStructArray data = new MWStructArray(1, KMAX, FIELDS);
data.set(FIELDS[0], k + 1, new MWNumericArray(k * 1.13));

Two MATLAB objects are created. Both objects have a Java wrapper and an
MATLAB array object in the MATLAB language runtime. When you dispose
of data, all of the resources for it are cleaned up. However, the anonymous
object created by new MWNumericArray(k * 1.13) is just marked for deletion
by the JVM. However, because the Java wrapper consumes a tiny amount of
space, the garbage collector is likely to leave it around. Because the JVM
never cleans up the wrapper object, the MATLAB language runtime never
cleans up the resources it has allocated.

The MATLAB object’s set() methods accept native Java types:

MWStructArray data = new MWStructArray(1, KMAX, FIELDS);
data.set(FIELDS[0], k + 1, k * 1.13);

In this instance, only one MATLAB object is created. When its dispose()
method is called all of the resources are cleaned up.

Disposing of MATLAB Objects
There are two ways of cleaning up MATLAB objects:

6-43

6 Programming

• the object’s dispose() method

• the static MWArray.disposeArray() method

Both methods release all of the resources associated with the MATLAB object.
The Java wrapper object is deleted. If there are no other references to the
MATLAB language runtime’s mxArray object, it is also deleted.

The following code disposes of a MATLAB object using its dispose() method.

MWCellArray myCA = new MWCellArray(5, 5);
...
myCA.dispose();

The following code disposes of a MATLAB object using the
MWArray.disposeArray() method.

MWCellArray myCA = new MWCellArray(5, 5);
...
MWArray.disposeArray(myCA);

6-44

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ JA

Improving Data Access Using the MCR User Data Interface
and MATLAB Builder JA

This feature provides a lightweight interface for easily accessing MCR data.
It allows data to be shared between an MCR instance, the MATLAB code
running on that MCR, and the wrapper code that created the MCR. Through
calls to the MCR User Data interface API, you access MCR data through
creation of a per-MCR-instance associative array of mxArrays, consisting of a
mapping from string keys to mxArray values. Reasons for doing this include,
but are not limited to:

• You need to supply run–time information to a client running an application
created with the Parallel Computing Toolbox. Profile information may be
supplied (and change) on a per-execution basis. For example, two instances
of the same application may run simultaneously with different profiles.

• You want to initialize the MCR with constant values that can be accessed
by all your MATLAB applications

• You want to set up a global workspace — a global variable or variables that
MATLAB and your client can access

• You want to store the state of any variable or group of variables

MATLAB Builder JA software supports per-MCR instance state access
through an object-oriented API. Unlike MATLAB Compiler software, access
to a per-MCR instance state is optional, rather than on by default. You can
access this state by adding setmcruserdata.m and getmcruserdata.m to your
deployment project or by specifying them on the command line. Alternatively,
you use a helper function to call these methods as demonstrated in “Supply
Run-Time Profile Information for Parallel Computing Toolbox Applications”
on page 6-46.

For more information, see “Using the MCR User Data Interface” in the
MATLAB Compiler User’s Guide.

6-45

6 Programming

Supply Run-Time Profile Information for Parallel
Computing Toolbox Applications
Following is a complete example of how you can use the MCR User Data
Interface as a mechanism to specify a profile for Parallel Computing Toolbox
applications.

Note Standalone executables and shared libraries generated from MATLAB
Compiler for parallel applications can now launch up to twelve local workers
without MATLAB Distributed Computing Server™.

Step 1: Write Your Parallel Computing Toolbox Code

1 Compile sample_pct.m in MATLAB.

This example code uses the cluster defined in the default profile.

The output assumes that the default profile is local.

function speedup = sample_pct (n)
warning off all;
tic
if(ischar(n))

n=str2double(n);
end
for ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time1 =toc;
parpool;
tic
parfor ii = 1:n

(cov(sin(magic(n)+rand(n,n))));
end
time2 =toc;
disp(['Normal loop times: ' num2str(time1) ...

',parallel loop time: ' num2str(time2)]);
disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

6-46

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ JA

' times faster than normal']);
delete(gcp);
disp('done');
speedup = (time1/time2);

2 Run the code as follows after changing the default profile to local, if
needed.

a = sample_pct(200)

3 Verify that you get the following results;

Starting matlabpool using the 'local'
profile ... connected to 4 labs.

Normal loop times: 1.4625, parallel loop time: 0.82891
parallel speedup: 1.7643 times faster than normal
Sending a stop signal to all the labs ... stopped.
done
a =

1.7643

Step 2: Set the Parallel Computing Toolbox Profile
In order to compile MATLAB code to a Java package and utilize the Parallel
Computing Toolbox, the mcruserdata must be set directly from MATLAB.
There is no Java API available to access the MCRUserdata as there is for C
and C++ applications built with MATLAB Compiler.

To set the mcruserdata from MATLAB, create an init function in your Java
class. This is a separate MATLAB function that uses setmcruserdata to
set the Parallel Computing Toolbox profile once. You then call your other
functions to utilize the Parallel Computing Toolbox functions.

Create the following init function:

function init_sample_pct
% Set the Parallel Profile:
if(isdeployed)

[profile, profpath] = uigetfile('*.settings');
% let the USER select file

6-47

6 Programming

setmcruserdata('ParallelProfile', fullfile(profpath, profile));
end

Tip If you need to change your profile in the application, use the
parallel.importProfile and parallel.defaultClusterProfile methods.
See the Parallel Computing Toolbox™ documentation for more information.

Step 3: Compile Your Function with the Library Compiler or
the Command Line
You can compile your function from the command line by entering the
following:

mcc -S -W 'java:parallelComponent,PctClass' init_sample_pct.m sample_pct.m

Alternately, you can use the Library Compiler following the steps in “Create a
Java Package from MATLAB Code” on page 1-10.

Project Name parallelComponent

Class Name PctClass

File to Compile pct_sample.m and
init_pct_sample.m

When the compilation finishes, a new folder with the same name as the
project is created. This folder contains the following subfolders:

• for_redistribution

• for_redistribution_files_only

• for_testing

6-48

Improving Data Access Using the MCR User Data Interface and MATLAB® Builder™ JA

Note If you are using the GPU feature of Parallel Computing Toolbox, you
need to manually add the PTX and CU files.

If you are using a Deployment Tool project, click Add files/directories on
the Build tab.

If you are using the mcc command, use the -a option.

Step 4: Write the Java Driver Application
Write the following Java driver application to use the generated package, as
follows, using a Java-compatible IDE such as Eclipse™:

import com.mathworks.toolbox.javabuilder.*;
import parallelComponent.*;

public class JavaParallelClass
{
public static void main(String[] args)
{

MWArray A = null;
PctClass C = null;
Object[] B = null;
try
{
C = new PctClass();
/* Set up the MCR with Parallel Data */
C.init_sample_pct();
A = new MWNumericArray(200);
B = C.sample_pct(1, A);
System.out.println(" The Speed Up was:" + B[0]);

}
catch (Exception e)
{
System.out.println("The error is " + e.toString());

}
finally
{

6-49

6 Programming

MWArray.disposeArray(A);
C.dispose();

}
}

}

The output is as follows:

(UIGETFILE brings up the window to select the MAT file)
Starting matlabpool using the 'profile' cluster profile

... connected to 4 labs.
Normal loop times: 2.6641, parallel loop time: 1.2568
parallel speedup: 2.1198 times faster than normal
Sending a stop signal to all the labs ... stopped.
Did not find any pre-existing parallel jobs created

by matlabpool.
done
The Speed Up was:2.1198

Compiling and Running the Application Without Using an IDE. If you
are not using an IDE, compile the application using command-line Java, as
follows:

Note Enter these commands on a single line, using the semi-colon as a
delimiter.

javac -classpath .;C:\pct_compile\javaApp\parallelComponent.jar;
matlabroot/toolbox/javabuilder/jar/javabuilder.jar

JavaParallelClass.java

Run the application from the command-line, as follows:

java -classpath .;C:\pct_compile\javaApp\parallelComponent.jar;
matlabroot/toolbox/javabuilder/jar/javabuilder.jar

JavaParallelClass

6-50

Dynamically Specifying Run-Time Options to the MCR

Dynamically Specifying Run-Time Options to the MCR

In this section...

“What Run-Time Options Can You Specify?” on page 6-51

“Setting and Retrieving MCR Option Values Using MWApplication” on
page 6-51

What Run-Time Options Can You Specify?
As of R2009a, you can pass MCR run-time options -nojvm, -nodisplay,
and -logfile to MATLAB Builder JA from the client application using two
classes in javabuilder.jar:

• MWApplication

• MWMCROption

Setting and Retrieving MCR Option Values Using
MWApplication
The MWApplication class provides several static methods to set MCR option
values and also to retrieve them. The following table lists static methods
supported by this class.

MWApplication Static Methods Purpose

MWApplication.initialize(MWMCROption... options); Passes MCR options (see
“Specifying Run-Time Options
Using MWMCROption” on page
6-52)

MWApplication.isMCRInitialized(); Returns true if MCR is
initialized; otherwise returns
false

MWApplication.isMCRJVMEnabled(); Returns true if MCR is launched
with JVM; otherwise returns
false

6-51

6 Programming

MWApplication Static Methods Purpose

MWApplication.isMCRNoDisplaySet(); Returns true if
MWMCROption.NODISPLAY is
used in MWApplication.
initialize

Note false is always returned
on Windows systems since
the -nodisplay option is not
supported on Windows systems.

MWApplication.getMCRLogfileName(); Retrieves the name of the log file

Specifying Run-Time Options Using MWMCROption
MWApplication.initialize takes zero or more MWMCROptions.

Calling MWApplication.initialize() without any inputs launches the MCR
with the following default values.

You must call MWApplication.initialize() before performing any other
processing.

These options are all write-once, read-only properties.

MCR Run-Time Option Default Values

-nojvm false

-logfile null

-nodisplay false

Note If there are no MCR options being passed, you do not need to use
MWApplication.initialize since initializing a generated class initializes
the MCR with default options.

6-52

Dynamically Specifying Run-Time Options to the MCR

Use the following static members of MWMCROption to represent the MCR
options you want to modify.

MWMCROption Static
Members

Purpose

MWMCROption.NOJVM Launches the MCR without a Java Virtual
Machine (JVM). When this option is used,
the JVM launched by the client application is
unaffected. The value of this option determines
whether or not the MCR should attach itself to
the JVM launched by the client application.

MWMCROption.NODISPLAY Launches the MCR without display functionality.

MWMCROption.logFile
("logfile.dat")

Allows you to specify a log file name (must be
passed with a log file name).

Passing and Retrieving MCR Option Values from a Java Application.
Following is an example of how MCR option values are passed and retrieved
from a client-side Java application:

MWApplication.initialize(MWMCROption.NOJVM,
MWMCROption.logFile("logfile.dat"),MWMCROption.NODISPLAY);

System.out.println(MWApplication.getMCRLogfileName());
System.out.println(MWApplication.isMCRInitialized());
System.out.println(MWApplication.isMCRJVMEnabled());
System.out.println(MWApplication.isMCRNoDisplaySet()); //UNIX

//Following is the initialization
// of MATLAB Builder JA
// class
myclass cls = new myclass();
cls.hello();

6-53

6 Programming

Sharing an MCR Instance in COM or Java Applications

In this section...

“What Is a Singleton MCR?” on page 6-54

“Advantages and Disadvantages of Using a Singleton” on page 6-54

“Which Products Support Singleton MCR and How Do I Create a Singleton?”
on page 6-55

What Is a Singleton MCR?
You create an instance of the MCR that can be shared (and reused) among all
subsequent class instances within a component. This is commonly called a
shared MCR instance or a Singleton MCR.

Advantages and Disadvantages of Using a Singleton
In most cases, a singleton MCR will provide many more advantages than
disadvantages. Following are examples of when you might and might not
create a shared MCR instance.

When You Should Use a Singleton
If you have multiple users running from a specific instance of MATLAB, using
a singleton will most likely:

• Utilize system memory more efficiently

• Decrease MCR start-up or initialization time

• Promote reuse of your application code base

When You Might Avoid Using a Singleton
Situations where using a singleton may not benefit you include:

• Running applications with a large number of global variables. This can
promote crosstalk which can eventually impact performance.

• Your installation runs many different versions of MATLAB, for testing
purposes.

6-54

Sharing an MCR Instance in COM or Java® Applications

• Your installation has a relativel

- On the library compiler app, select Exclusive MCR under Additional
Runtime Settings.

y small number of users and is not overly concerned with performance.

Which Products Support Singleton MCR and How Do
I Create a Singleton?
Singleton MCR is only supported by the following products on these specific
targets:

Product Target supported by
Singleton MCR

Create a Singleton MCR
by....

MATLAB Builder EX COM component Default behavior for target is
Singleton MCR. You do not
need to perform other steps.

MATLAB Builder NE .NET assembly Default behavior for target is
Singleton MCR. You do not
need to perform other steps.

MATLAB Builder NE COM component

MATLAB Builder JA Java packages

• Using the shared library
compiler app, click
Settings and add -S to
the Additional flags to
pass to mcc field.

• Using mcc pass the -S flag.

6-55

6 Programming

Handling Data Conversion Between Java and MATLAB

In this section...

“Overview” on page 6-56

“Calling MWArray Methods” on page 6-56

“Creating Buffered Images from a MATLAB Array” on page 6-57

Overview
The call signature for a method that encapsulates a MATLAB function uses
one of the MATLAB data conversion classes to pass arguments and return
output. When you call any such method, all input arguments not derived from
one of the MWArray classes are converted by the builder to the correct MWArray
type before being passed to the MATLAB method.

For example, consider the following Java statement:

result = theFourier.plotfft(3, data, new Double(interval));

The third argument is of type java.lang.Double, which converts to a
MATLAB 1-by-1 double array.

Calling MWArray Methods
The conversion rules apply not only when calling your own methods,
but also when calling constructors and factory methods belonging to the
MWArray classes. For example, the following code calls the constructor for the
MWNumericArray class with a Java double input. The MATLAB Builder JA
product converts the Java double input to an instance of MWNumericArray
having a ClassID property of MWClassID.DOUBLE. This is the equivalent of a
MATLAB 1-by-1 double array.

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

6-56

Handling Data Conversion Between Java® and MATLAB®

Array A is of type double

Specifying the Type
There is an exception: if you supply a specific data type in the same
constructor, the MATLAB Builder JA product converts to that type rather
than following the default conversion rules. Here, the code specifies that A
should be constructed as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;
MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);
System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

Array A is of type int16

Creating Buffered Images from a MATLAB Array
Use the renderArrayData method to:

• Create a buffered image from data in a given MATLAB array.

• Verify the array is of three dimensions (height, width, and color component).

• Verify the color component order is red, green, and blue.

Search on renderArrayData in the Javadoc for information on input
parameters, return values, exceptions thrown, and examples. The Javadoc
is located at matlabroot/help/javabuilder/MWArrayAPI.

6-57

6 Programming

Setting Java Properties

In this section...

“How to Set Java System Properties” on page 6-58

“Ensure a Consistent GUI Appearance” on page 6-58

How to Set Java System Properties
Set Java system properties in one of two ways:

• In the Java statement. Use the syntax: java -Dpropertyname=value,
where propertyname is the name of the Java system property you want to
set and value is the value to which you want the property set.

• In the Java code. Insert the following statement in your Java code near the
top of the main function, before you initialize any Java classes:

System.setProperty(key,value)

key is the name of the Java system property you want to set, and value
is the value to which you want the property set.

Ensure a Consistent GUI Appearance
After developing your initial GUI using the MATLAB Builder JA product,
subsequent GUIs that you develop may inherit properties of the MATLAB
GUI, rather than properties of your initial design. To preserve your original
look and feel, set the mathworks.DisableSetLookAndFeel Java system
property to true.

Setting DisableSetLookAndFeel
The following are examples of how to set mathworks.DisableSetLookAndFeel
using the techniques in “How to Set Java System Properties” on page 6-58:

• In the java statement:

java -classpath X:/mypath/tomy/javabuilder.jar
-Dmathworks.DisableSetLookAndFeel=true

• In the Java code:

6-58

Setting Java® Properties

Class A {

main () {

System.getProperties().set("mathworks.DisableSetLookAndFeel","true");

foo f = newFoo();

}

}

6-59

6 Programming

Blocking Execution of a Console Application that Creates
Figures

In this section...

“waitForFigures Method” on page 6-60

“Block Figure Window Display in a Console Application” on page 6-61

waitForFigures Method
The MATLAB Builder JA product adds a special waitForFigures method to
each Java class that it creates. waitForFigures takes no arguments. Your
application can call waitForFigures any time during execution.

The purpose of waitForFigures is to block execution of a calling program
as long as figures created in encapsulated MATLAB code are displayed.
Typically you use waitForFigures when:

• There are one or more figures open that were created by a Java class
created by the MATLAB Builder JA product.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When waitForFigures is called, execution of the calling program is blocked if
any figures created by the calling object remain open.

Caution Use care when calling the waitForFigures method. Calling
this method from an interactive program like Microsoft Excel can hang the
application. Call this method only from console-based programs.

6-60

Blocking Execution of a Console Application that Creates Figures

Block Figure Window Display in a Console
Application
The following example illustrates using waitForFigures from a Java
application. The example uses a Java class created by the MATLAB Builder
JA product; the object encapsulates MATLAB code that draws a simple plot.

1 Create a work folder for your source code. In this example, the folder is
D:\work\plotdemo.

2 In this folder, create the following MATLAB file:

drawplot.m

function drawplot()
plot(1:10);

3 Use the MATLAB Builder JA product to create a Java package with the
following properties:

Package name examples

Class name Plotter

4 Create a Java program in a file named runplot.java with the following code:

import com.mathworks.toolbox.javabuilder.*;
import examples.Plotter;

public class runplot {
public static void main(String[] args) {

try {
plotter p = new Plotter();
try {

p.showPlot();
p.waitForFigures();

}
finally {
p.dispose();

}
}

6-61

6 Programming

catch (MWException e) {
e.printStackTrace();

}
}

}

5 Compile the application with the javac command. For an example, see
“Testing the Java Package in a Java Application” on page 2-14.

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to waitForFigures, comment out
the call, rebuild the application, and run it. In this case, the figure is drawn
and is immediately destroyed as the application exits.

6-62

Ensuring Multi-Platform Portability

Ensuring Multi-Platform Portability
CTF archives containing only MATLAB files are platform independent, as are
.jar files. These files can be used out of the box on any platform providing
that the platform has either MATLAB or the MCR installed.

However, if your CTF archive or JAR file contains MEX-files, which are
platform dependent, do the following:

1 Compile your MEX-file once on each platform where you want to run your
MATLAB Builder JA application.

For example, if you are running on a Windows machine, and you want to
also run on the Linux 64-bit platform, compile my_mex.c twice (once on a
PC to get my_mex.mexw32 and then again on a Linux 64-bit machine to get
my_mex.mexa64).

2 Create the MATLAB Builder JA package on one platform using the mcc
command, using the -a flag to include the MEX-file compiled on the other
platform(s). In the example above, run mcc on Windows and include the -a
flag to include my_mex.mexa64. In this example, the mcc command would be:

mcc -W 'java:mycomp,myclass' my_matlab_file.m -a my_mex.mexa64

Note In this example, it is not necessary to explicitly include my_mex.mexw32
(providing you are running on Windows). This example assumes that
my_mex.mexw32 and my_mex.mexa64 reside in the same folder.

For example, if you are running on a Windows machine and you want to
ensure portability of the CTF file for a MATLAB Builder JA package that
invokes the yprimes.c file (from matlabroot\extern\examples\mex) on the
Linux 64-bit platform, execute the following mcc command:

mcc -W 'java:mycomp,myclass' callyprime.m -a yprime.mexa64

where callyprime.m can be a simple MATLAB function as follows:

function callyprime

6-63

6 Programming

disp(yprime(1,1:4));

Ensure the yprime.mexa64 file is in the same folder as your Windows
MEX-file.

Tip If you are unsure if your JAR file contains MEX-files, do the following:

1 Run mcc with the -v option to list the names of the MEX-files. See “-v
Verbose” in the MATLAB Compiler documentation for more information.

2 Obtain appropriate versions of these files from the version of MATLAB
installed on your target operating system.

3 Include these versions in the archive by running mcc with the -a option
as documented in this section. See “-a Add to Archive” in the MATLAB
Compiler documentation for more information.

Caution Some toolbox functionality will not be deployable when compiled
into a Java package and run on a platform other than the one compiled on.
This is because some toolbox code includes data that may be platform specific.
If this is the case, you can only deploy the application to like platforms. For
example, the Image Processing Toolbox function IMHIST will fail if deployed
cross-platform with an undefined function error.

JAR files produced by MATLAB Builder JA are tested and qualified to run on
platforms supported by MATLAB. See the Platform Roadmap for MATLAB
for more information.

6-64

http://www.mathworks.com/support/sysreq/roadmap.html

CTF Archive Embedding and Extraction

CTF Archive Embedding and Extraction

In this section...

“Overview” on page 6-65

“Using MWComponentOptions Class to Indicate Extraction Options” on
page 6-65

“Using Environment Variables to Indicate Extraction Options” on page 6-67

“For More Information” on page 6-69

Overview
CTF data is extracted from the JAR file with no separate CTF or
componentnamemcr folder needed on the target machine. This behavior is
helpful when storage space on a file system is limited.

If you don’t want CTF data extracted by default, use either the
MWComponentOptions class, or use environment variables, to specify how
MATLAB Builder JA handles CTF data extraction and utilization.

Using MWComponentOptions Class to Indicate
Extraction Options
You can find the Javadoc for MWComponentOptions at
http://www.mathworks.com/help/javabuilder/MWArrayAPI/com/mathworks/toolbox/javabu

Selecting Options
Choose from the following CtfSource or ExtractLocation instantiation
options to customize how the MATLAB Builder JA product manages CTF
content with MWComponentOptions:

• CtfSource— This option specifies where the CTF file may be found for an
extracted component. It defines a binary data stream comprised of the bits
of the CTF file. The following values are objects of some type extending
MWCtfSource:

6-65

http://www.mathworks.com/help/javabuilder/MWArrayAPI/com/mathworks/toolbox/javabuilder/MWComponentOptions.html

6 Programming

- MWCtfSource.NONE— Indicates that no CTF file is to be extracted. This
implies that the extracted CTF data is already accessible somewhere on
your file system. This is a public, static, final instance of MWCtfSource.

- MWCtfFileSource — Indicates that the CTF data resides within a
particular file location that you specify. This class takes a java.io.File
object in its constructor.

- MWCtfDirectorySource — Indicates a folder to be scanned when
instantiating the component: if a file with a .ctf suffix is found in the
folder you supply, the CTF archive bits are loaded from that file. This
class takes a java.io.File object in its constructor.

- MWCtfStreamSource— Allows CTF bits to be read and extracted directly
from a specified input stream. This class takes a java.io.InputStream
object in its constructor.

• ExtractLocation— This option specifies where the extracted CTF content
is to be located. Since the MCR requires all CTF content be located
somewhere on your file system, use the desired ExtractLocation option,
along with the component type information, to define a unique location. A
value for this option is an instance of the class MWCtfExtractLocation.
An instance of this class can be created by passing a java.io.File or
java.lang.String into the constructor to specify the file system location
to be used or one of these predefined, static final instances may be used:

- MWCtfExtractLocation.EXTRACT_TO_CACHE— Use to indicate that the
CTF content is to be placed in the MCR component cache. This is the
default setting for R2007a and forward.

- MWCtfExtractLocation.EXTRACT_TO_COMPONENT_DIR— Use when you want
to locate the JAR or .class files from which the component has been
loaded. If the location is found (e.g., it is on the file system), then the
CTF data is extracted into the same folder. This option most closely
matches the behavior of R2007a and previous releases.

Note CTF archives are extracted by default to temp\user_name\mcrCachen.nn.

6-66

CTF Archive Embedding and Extraction

Setting Options
Use the following methods to get or set the location where the CTF archive
may be found for an extracted component:

• getCtfSource()

• setCtfSource()

Use the following methods to get or set the location where the extracted CTF
content is to be located:

• getExtractLocation()

• setExtractLocation()

Enabling MCR Component Cache, Utilizing CTF Content Already
on Your System. If you want to enable the MCR Component Cache for
a generated Java class utilizing CTF content already resident in your file
system, instantiate MWComponentOptions using the following statements:

MWComponentOptions options = new MWComponentOptions();

// set options for the class by calling setter methods
// on `options'
options.setCtfSource(MWCtfSource.NONE);

options.setExtractLocation(
new MWCtfExtractLocation(C:\\readonlydir\\MyModel_mcr));

// instantiate the class using the desired options
MyModel m = new MyModel(options);

Using Environment Variables to Indicate Extraction
Options
Use the following environment variables to change these settings.

6-67

6 Programming

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the CTF
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

MCR_CACHE_VERBOSE When set to any value, this
variable prints logging details
about the component cache
for diagnostic reasons. This
can be very helpful if problems
are encountered during CTF
archive extraction.

Logging details are turned off
by default (for example, when
this variable has no value).

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this
variable is 32M (megabytes).
This may, however, be changed
after you have set the variable
the first time. Edit the file
.max_size, which resides in
the file designated by running
the mcrcachedir command,
with the desired cache size
limit.

Overriding Default Behavior
To extract the CTF archive, compile using the -C option when calling mcc.

You can also implement this override by entering -C in the Settings editor
of Library Compiler .

You might want to use this option to troubleshoot problems with the CTF
archive, for example, as the log and diagnostic messages are much more
visible.

6-68

CTF Archive Embedding and Extraction

For More Information
For more information about the CTF Archive, see “Component Technology
File (CTF Archive)”.

6-69

6 Programming

Learning About Java Classes and Methods by Exploring
the Javadoc

The documentation generated by Oracles Javadoc can be a powerful
resource when using the MATLAB Builder JA product. The Javadoc can be
browsed from matlabroot/help/javabuilder/MWArrayAPI in your product
installation and by entering the name of the class or method you want to learn
more about in the search field on the Index page.

Javadoc contains, among other information:

• Signatures that diagram method and class usage

• Parameters passed in, return values expected, and exceptions that can be
thrown

• Examples demonstrating typical usage of the class or method

6-70

7

Sample Java Applications

• “Plot” on page 7-2

• “Spectral Analysis” on page 7-9

• “Matrix Math” on page 7-16

• “Phone Book” on page 7-28

• “Optimization” on page 7-36

• “Web Application” on page 7-47

Note Remember to double-quote all parts of the java command paths that
contain spaces. To test directly against the MCR when executing java,
substitute mcrroot for matlabroot, where mcrroot is the location where
the MCR is installed on your system.

7 Sample Java® Applications

Plot

In this section...

“Purpose” on page 7-2

“Procedure” on page 7-2

Purpose
The purpose of the example is to show you how to do the following:

• Use the MATLAB Builder JA product to convert a MATLAB function
(drawplot.m) to a method of a Java class (plotter) and wrap the class in a
Java pacakage (plotdemo).

• Access the MATLAB function in a Java application (createplot.java)
by instantiating the plotter class and using the MWArray class library
to handle data conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• Build and run the createplot.java application.

The drawplot.m function displays a plot of input parameters x and y.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\PlotExample

b At the MATLAB command prompt, cd to the new PlotExample subfolder
in your work folder.

7-2

Plot

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Configure Your Environment” on
page 1-7.

3 Write the drawplot.m function as you would any MATLAB function.

The following code defines the drawplot.m function:

function drawplot(x,y)
plot(x,y);

This code is already in your work folder in
PlotExample\PlotDemoComp\drawplot.m.

4 While in MATLAB, issue the following command to open the Deployment
Tool Window:

deploytool

5 You create a Java package by using the Library Compiler to build a Java class
that wraps around your MATLAB code.

To create the Java package the Library Compiler, use the following
information as you work through this example in “Compile a Java Package
with the Library Compiler App” on page 4-2:

Project Name plotdemo

Class Name plotter

File to compile drawplot.m

6 Write source code for an application that accesses the MATLAB function.

The sample application for this example is in
matlabroot\toolbox\javabuilder\Examples\PlotExample
\PlotDemoJavaApp\createplot.java.

The program graphs a simple parabola from the equation y = x2 .

7-3

7 Sample Java® Applications

The program listing is shown here.

createplot.java

/* createplot.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import plotdemo.*;

/*

* createplot class demonstrates plotting x-y data into

* a MATLAB figure window by graphing a simple parabola.

*/

class createplot

{

public static void main(String[] args)

{

MWNumericArray x = null; /* Array of x values */

MWNumericArray y = null; /* Array of y values */

plotter thePlot = null; /* Plotter class instance */

int n = 20; /* Number of points to plot */

try

{

/* Allocate arrays for x and y values */

int[] dims = {1, n};

x = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

y = MWNumericArray.newInstance(dims,

MWClassID.DOUBLE, MWComplexity.REAL);

/* Set values so that y = x^2 */

for (int i = 1; i <= n; i++)

{

7-4

Plot

x.set(i, i);

y.set(i, i*i);

}

/* Create new plotter object */

thePlot = new plotter();

/* Plot data */

thePlot.drawplot(x, y);

thePlot.waitForFigures();

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(x);

MWArray.disposeArray(y);

if (thePlot != null)

thePlot.dispose();

}

}

}

The program does the following:

• Creates two arrays of double values, using MWNumericArray to represent
the data needed to plot the equation.

• Instantiates the plotter class as thePlot object, as shown:

thePlot = new plotter();

• Calls the drawplot method to plot the equation using the MATLAB plot
function, as shown:

thePlot.drawplot(x,y);

7-5

7 Sample Java® Applications

• Uses a try-catch block to catch and handle any exceptions.

7 Compile the createplot application using javac. When entering this
command, ensure there are no spaces between path names in the matlabroot
argument. For example, there should be no space between javabuilder.jar;
and .\distrib\plotdemo.jar in the following example. cd to your work
folder. Ensure createplot.java is in your work folder

• On Windows, execute this command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\plotdemo.jar createplot.java

• On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/plotdemo.jar createplot.java

8 Run the application.

To run the createplot.class file, do one of the following:

• On Windows, type:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\plotdemo.jar
createplot

• On UNIX, type:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/plotdemo.jar
createplot

7-6

Plot

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Oracle JDK and JRE. A certain
measure of cross-version compatibility resides in the Oracle software and it
may be possible to run MCR-based components with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the -d64
flag in the Java command. See “MATLAB® Builder™ JA Limitations” on page
12-3 for more specific information.

The createplot program should display the output.

7-7

7 Sample Java® Applications

7-8

Spectral Analysis

Spectral Analysis

In this section...

“Purpose” on page 7-9

“Procedure” on page 7-10

Purpose
The purpose of the example is to show you the following:

• How to use the MATLAB Builder JA product to create a package
(spectralanalysis) containing a class that has a private method that is
automatically encapsulated

• How to access the MATLAB functions in a Java application
(powerspect.java), including use of the MWArray class hierarchy to
represent data

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the application

The spectralanalysis package analyzes a signal and graphs the result. The
class, fourier, performs a fast Fourier transform (FFT) on an input data
array. A method of this class, computefft, returns the results of that FFT
as two output arrays—an array of frequency points and the power spectral
density. The second method, plotfft, graphs the returned data. These two
methods, computefft and plotfft, encapsulate MATLAB functions.

The MATLAB code for these two methods is in
computefft.m and plotfft.m, which is found in
matlabroot\toolbox\javabuilder\Examples\SpectraExample\SpectraDemoComp.

7-9

7 Sample Java® Applications

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\SpectraExample

b At the MATLAB command prompt, cd to the new SpectraExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Configure Your Environment” on
page 1-7.

3 Write the MATLAB code that you want to access.

This example uses computefft.m and plotfft.m which are already in your
work folder in SpectraExample\SpectraDemoComp.

4 Select the Library Compiler from the MATLAB App gallery.

5 Create the Java package by using the Library Compiler to build a Java class
that wraps around your MATLAB code.

Use the following information as you work through this example in “Compile
a Java Package with the Library Compiler App” on page 4-2:

Project Name spectralanalysis

Class Name fourier

File to compile plotfft.m

Note In this example, the application that uses the fourier class does not
need to call computefft directly. The computefft method is required only by
the plotfft method. Thus, when creating the package, you do not need to
add the computefft function, although doing so does no harm.

6 Write source code for an application that accesses the MATLAB functions.

7-10

Spectral Analysis

The sample application for this example is in
SpectraExample\SpectraDemoJavaApp\powerspect.java.

The program listing is shown here.

powerspect.java

/* powerspect.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import spectralanalysis.*;

/*

* powerspect class computes and plots the power

* spectral density of an input signal.

*/

class powerspect

{

public static void main(String[] args)

{

double interval = 0.01; /* Sampling interval */

int nSamples = 1001; /* Number of samples */

MWNumericArray data = null; /* Stores input data */

Object[] result = null; /* Stores result */

fourier theFourier = null; /* Fourier class instance */

try

{

/*

* Construct input data as sin(2*PI*15*t) +

* sin(2*PI*40*t) plus a random signal.

* Duration = 10

* Sampling interval = 0.01

*/

7-11

7 Sample Java® Applications

int[] dims = {1, nSamples};

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE,

MWComplexity.REAL);

for (int i = 1; i <= nSamples; i++)

{

double t = (i-1)*interval;

double x = Math.sin(2.0*Math.PI*15.0*t) +

Math.sin(2.0*Math.PI*40.0*t) +

Math.random();

data.set(i, x);

}

/* Create new fourier object */

theFourier = new fourier();

theFourier.waitForFigures();

/* Compute power spectral density and plot result */

result = theFourier.plotfft(3, data,

new Double(interval));

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(data);

MWArray.disposeArray(result);

if (theFourier != null)

theFourier.dispose();

}

}

}

7-12

Spectral Analysis

The program does the following:

• Constructs an input array with values representing a random signal with
two sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data, as shown:

data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE, MWComplexity.REAL);

• Instantiates a fourier object

• Calls the plotfft method, which calls computeftt and plots the data

• Uses a try-catch block to handle exceptions

• Frees native resources using MWArray methods

7 Compile the powerspect.java application using javac. When entering this
command, ensure there are no spaces between path names in the matlabroot
argument. For example, there should be no space between javabuilder.jar;
and .\distrib\spectralanalysis.jar in the following example.

Open a Command Prompt window and cd to the
matlabroot\spectralanalysis folder. cd to your work folder. Ensure
powerspect.java is in your work folder

• On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\spectralanalysis.jar powerspect.java

• On UNIX, execute the following command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/spectralanalysis.jar powerspect.java

Note For matlabroot substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

7-13

7 Sample Java® Applications

8 Run the application.

• On Windows, execute the powerspect class file:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar
.\distrib\spectralanalysis.jar
powerspect

• On UNIX, execute the powerspect class file:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/spectralanalysis.jar
powerspect

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Oracle JDK and JRE. A certain
measure of cross-version compatibility resides in the Oracle software and it
may be possible to run MCR-based components with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the -d64
flag in the Java command. See “MATLAB® Builder™ JA Limitations” on page
12-3 for more specific information.

The powerspect program should display the output:

7-14

Spectral Analysis

7-15

7 Sample Java® Applications

Matrix Math

In this section...

“Purpose” on page 7-16

“MATLAB Functions to Be Encapsulated” on page 7-17

“Understanding the getfactor Program” on page 7-18

“Procedure” on page 7-18

Purpose
The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a generated class.

• How to manually handle native memory management.

• How to access the MATLAB functions in a Java application
(getfactor.java) by instantiating Factor and using the MWArray class
library to handle data conversion.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder package.

• How to build and run the MatrixMathDemoApp application

This example builds a Java package to perform matrix math. The example
creates a program that performs Cholesky, LU, and QR factorizations on a
simple tridiagonal matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

You supply the size of the matrix on the command line, and the program
constructs the matrix and performs the three factorizations. The original

7-16

Matrix Math

matrix and the results are printed to standard output. You may optionally
perform the calculations using a sparse matrix by specifying the string
"sparse" as the second parameter on the command line.

MATLAB Functions to Be Encapsulated
The following code defines the MATLAB functions used in the example:

cholesky.m

function [L] = cholesky(A)

%CHOLESKY Cholesky factorization of A.

% L = CHOLESKY(A) returns the Cholesky factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2011 The MathWorks, Inc.

L = chol(A);

ludecomp.m

function [L,U] = ludecomp(A)

%LUDECOMP LU factorization of A.

% [L,U] = LUDECOMP(A) returns the LU factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2011 The MathWorks, Inc.

[L,U] = lu(A);

qrdecomp.m

function [Q,R] = qrdecomp(A)

%QRDECOMP QR factorization of A.

% [Q,R] = QRDECOMP(A) returns the QR factorization of A.

% This file is used as an example for the MATLAB

% Builder for Java product.

% Copyright 2001-2011 The MathWorks, Inc.

7-17

7 Sample Java® Applications

[Q,R] = qr(A);

Understanding the getfactor Program
The getfactor program takes one or two arguments from standard input.
The first argument is converted to the integer order of the test matrix. If the
string sparse is passed as the second argument, a sparse matrix is created
to contain the test array. The Cholesky, LU, and QR factorizations are then
computed and the results are displayed to standard output.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls
the cholesky, ludecomp, and qrdecomp methods. This part is executed
inside of a try block. This is done so that if an exception occurs during
execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard
output to let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources
before exiting.

Procedure

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\MatrixMathExample

b At the MATLAB command prompt, cd to the new MatrixMathExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Configure Your Environment” on
page 1-7.

3 Write the MATLAB functions as you would any MATLAB function.

7-18

Matrix Math

The code for cholesky.m, ludecomp.m, and qrdecomp.m functions is already
in your work folder in MatrixMathExample\MatrixMathDemoComp\.

4 Select Library Compiler from the MATLAB App gallery.

5 Create the Java package using the Library Compiler to build a Java class that
wraps around your MATLAB code.

Use the following information as you work through this example in “Compile
a Java Package with the Library Compiler App” on page 4-2:

Project Name factormatrix

Class Name factor

Files to compile cholesky.m
ludecomp.m
qrdecomp.m

6 Write source code for an application that accesses the MATLAB functions.

The sample application for this example is in
MatrixMathExample\MatrixMathDemoJavaApp\getfactor.java.

The program listing is shown here.

getfactor.java

/* getfactor.java

* This file is used as an example for the MATLAB

* Builder for Java product.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import factormatrix.*;

/*

* getfactor class computes cholesky, LU, and QR

7-19

7 Sample Java® Applications

* factorizations of a finite difference matrix

* of order N. The value of N is passed on the

* command line. If a second command line arg

* is passed with the value of "sparse", then

* a sparse matrix is used.

*/

class getfactor

{

public static void main(String[] args)

{

MWNumericArray a = null; /* Stores matrix to factor */

Object[] result = null; /* Stores the result */

factor theFactor = null; /* Stores factor class instance */

try

{

/* If no input, exit */

if (args.length == 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/* Convert input value */

int n = Integer.valueOf(args[0]).intValue();

if (n <= 0)

{

System.out.println("Error: must input a positive integer");

return;

}

/*

* Allocate matrix. If second input is "sparse"

* allocate a sparse array

*/

int[] dims = {n, n};

if (args.length > 1 && args[1].equals("sparse"))

a = MWNumericArray.newSparse(dims[0], dims[1],n+2*(n-1),

7-20

Matrix Math

MWClassID.DOUBLE, MWComplexity.REAL);

else

a = MWNumericArray.newInstance(dims,MWClassID.DOUBLE, MWComplexity.REAL);

/* Set matrix values */

int[] index = {1, 1};

for (index[0] = 1; index[0] <= dims[0]; index[0]++)

{

for (index[1] = 1; index[1] <= dims[1]; index[1]++)

{

if (index[1] == index[0])

a.set(index, 2.0);

else if (index[1] == index[0]+1 || index[1] == index[0]-1)

a.set(index, -1.0);

}

}

/* Create new factor object */

theFactor = new factor();

/* Print original matrix */

System.out.println("Original matrix:");

System.out.println(a);

/* Compute cholesky factorization and print results. */

result = theFactor.cholesky(1, a);

System.out.println("Cholesky factorization:");

System.out.println(result[0]);

MWArray.disposeArray(result);

/* Compute LU factorization and print results. */

result = theFactor.ludecomp(2, a);

System.out.println("LU factorization:");

System.out.println("L matrix:");

System.out.println(result[0]);

System.out.println("U matrix:");

System.out.println(result[1]);

MWArray.disposeArray(result);

7-21

7 Sample Java® Applications

/* Compute QR factorization and print results. */

result = theFactor.qrdecomp(2, a);

System.out.println("QR factorization:");

System.out.println("Q matrix:");

System.out.println(result[0]);

System.out.println("R matrix:");

System.out.println(result[1]);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

MWArray.disposeArray(a);

MWArray.disposeArray(result);

if (theFactor != null)

theFactor.dispose();

}

}

}

The statement:

theFactor = new factor();

creates an instance of the class factor.

The following statements call the methods that encapsulate the MATLAB
functions:

result = theFactor.cholesky(1, a);
...
result = theFactor.ludecomp(2, a);
...
result = theFactor.qrdecomp(2, a);
...

7-22

Matrix Math

7 Copy getfactor.java into the factormatrix folder.

8 Compile the getfactor application using javac. When entering this
command, ensure there are no spaces between path names in the matlabroot
argument. For example, there should be no space between javabuilder.jar;
and .\distrib\factormatrix.jar in the following example.

cd to the factormatrix folder in your work folder.

• On Windows, execute the following command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\factormatrix.jar getfactor.java

• On UNIX, execute the following command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/factormatrix.jar getfactor.java

9 Run the application.

Run getfactor using a nonsparse matrix

• On Windows, execute the getfactor class file as follows:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\factormatrix.jar
getfactor 4

• On UNIX, execute the getfactor class file as follows:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/factormatrix.jar
getfactor 4

7-23

7 Sample Java® Applications

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Oracle JDK and JRE. A certain
measure of cross-version compatibility resides in the Oracle software and it
may be possible to run MCR-based components with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the -d64
flag in the Java command. See “MATLAB® Builder™ JA Limitations” on page
12-3 for more specific information.

Output for the Matrix Math Example

Original matrix:
2 -1 0 0

-1 2 -1 0
0 -1 2 -1
0 0 -1 2

Cholesky factorization:
1.4142 -0.7071 0 0

0 1.2247 -0.8165 0
0 0 1.1547 -0.8660
0 0 0 1.1180

LU factorization:
L matrix:

1.0000 0 0 0
-0.5000 1.0000 0 0

0 -0.6667 1.0000 0

7-24

Matrix Math

0 0 -0.7500 1.0000

U matrix:
2.0000 -1.0000 0 0

0 1.5000 -1.0000 0
0 0 1.3333 -1.0000
0 0 0 1.2500

QR factorization:
Q matrix:

-0.8944 -0.3586 -0.1952 0.1826
0.4472 -0.7171 -0.3904 0.3651

0 0.5976 -0.5855 0.5477
0 0 0.6831 0.7303

R matrix:
-2.2361 1.7889 -0.4472 0

0 -1.6733 1.9124 -0.5976
0 0 -1.4639 1.9518
0 0 0 0.9129

To run the same program for a sparse matrix, use the same command and add
the string sparse to the command line:

java (... same arguments) getfactor 4 sparse

Output for a Sparse Matrix

Original matrix:
(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1

7-25

7 Sample Java® Applications

(3,4) -1
(4,4) 2

Cholesky factorization:
(1,1) 1.4142
(1,2) -0.7071
(2,2) 1.2247
(2,3) -0.8165
(3,3) 1.1547
(3,4) -0.8660
(4,4) 1.1180

LU factorization:
L matrix:

(1,1) 1.0000
(2,1) -0.5000
(2,2) 1.0000
(3,2) -0.6667
(3,3) 1.0000
(4,3) -0.7500
(4,4) 1.0000

U matrix:
(1,1) 2.0000
(1,2) -1.0000
(2,2) 1.5000
(2,3) -1.0000
(3,3) 1.3333
(3,4) -1.0000
(4,4) 1.2500

QR factorization:
Q matrix:

(1,1) 0.8944
(2,1) -0.4472
(1,2) 0.3586

7-26

Matrix Math

(2,2) 0.7171
(3,2) -0.5976
(1,3) 0.1952
(2,3) 0.3904
(3,3) 0.5855
(4,3) -0.6831
(1,4) 0.1826
(2,4) 0.3651
(3,4) 0.5477
(4,4) 0.7303

R matrix:
(1,1) 2.2361
(1,2) -1.7889
(2,2) 1.6733
(1,3) 0.4472
(2,3) -1.9124
(3,3) 1.4639
(2,4) 0.5976
(3,4) -1.9518
(4,4) 0.9129

7-27

7 Sample Java® Applications

Phone Book

In this section...

“Purpose” on page 7-28

“Procedure” on page 7-28

Purpose
An example of how to process an MWStructArray as output from a generated
class might be:

Object[] tmp = myComponent.myFunction(1, myArray);
MWStructArray myStruct = (MWStructArray) tmp[0];

The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

Note For complete reference information about the MWArray class hierarchy,
see the com.mathworks.toolbox.javabuilder package.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\PhoneExample

b At the MATLAB command prompt, cd to the new PhoneExample subfolder
in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Configure Your Environment” on
page 1-7.

3 Write the makephone function as you would any MATLAB function.

7-28

Phone Book

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% This file is used as an example for MATLAB

% Builder for Java.

% Copyright 2006-2011 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work folder in makephone.m.

4 Select Library Compiler from the MATLAB App gallery.

5 Create a Java Package using the Library Compiler to build a Java class that
wraps around your MATLAB code.

Use the following information as you work through this example in “Compile
a Java Package with the Library Compiler App” on page 4-2:

Project Name phonebookdemo

Class Name phonebook

File to compile makephone.m

6 Write source code for an application that accesses the MATLAB functions.

The sample application for this example is in
matlabroot\toolbox\javabuilder\Examples\PhoneExample\
PhoneDemoJavaApp\getphone.java.

7-29

7 Sample Java® Applications

The program defines a structure array containing names and phone numbers,
modifies it using a MATLAB function, and displays the resulting structure
array.

The program listing is shown here.

getphone.java

/* getphone.java

% This file is used as an example for MATLAB

% Builder for Java.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import phonebookdemo.*;

/*

* getphone class demonstrates the use of the MWStructArray class

*/

class getphone

{

public static void main(String[] args)

{

phonebook thePhonebook = null; /* Stores magic class instance */

MWStructArray friends = null; /* Sample input data */

Object[] result = null; /* Stores the result */

MWStructArray book = null; /* Output data extracted from result */

try

{

/* Create new magic object */

thePhonebook = new phonebook();

/* Create an MWStructArray with two fields */

String[] myFieldNames = {"name", "phone"};

friends = new MWStructArray(2,2,myFieldNames);

7-30

Phone Book

/* Populate struct with some sample data --- friends and phone numbers */

friends.set("name",1,new MWCharArray("Jordan Robert"));

friends.set("phone",1,3386);

friends.set("name",2,new MWCharArray("Mary Smith"));

friends.set("phone",2,3912);

friends.set("name",3,new MWCharArray("Stacy Flora"));

friends.set("phone",3,3238);

friends.set("name",4,new MWCharArray("Harry Alpert"));

friends.set("phone",4,3077);

/* Show some of the sample data */

System.out.println("Friends: ");

System.out.println(friends.toString());

/* Pass it to a MATLAB function that determines external phone number */

result = thePhonebook.makephone(1, friends);

book = (MWStructArray)result[0];

System.out.println("Result: ");

System.out.println(book.toString());

/* Extract some data from the returned structure */

System.out.println("Result record 2:");

System.out.println(book.getField("name",2));

System.out.println(book.getField("phone",2));

System.out.println(book.getField("external",2));

/* Print the entire result structure using the helper function below */

System.out.println("");

System.out.println("Entire structure:");

dispStruct(book);

}

catch (Exception e)

{

System.out.println("Exception: " + e.toString());

}

finally

{

/* Free native resources */

7-31

7 Sample Java® Applications

MWArray.disposeArray(result);

MWArray.disposeArray(friends);

MWArray.disposeArray(book);

if (thePhonebook != null)

thePhonebook.dispose();

}

}

public static void dispStruct(MWStructArray arr) {

System.out.println("Number of Elements: " + arr.numberOfElements());

//int numDims = arr.numberOfDimensions();

int[] dims = arr.getDimensions();

System.out.print("Dimensions: " + dims[0]);

for (int i = 1; i < dims.length; i++)

{

System.out.print("-by-" + dims[i]);

}

System.out.println("");

System.out.println("Number of Fields: " + arr.numberOfFields());

System.out.println("Standard MATLAB view:");

System.out.println(arr.toString());

System.out.println("Walking structure:");

java.lang.String[] fieldNames = arr.fieldNames();

for (int element = 1; element <= arr.numberOfElements(); element++) {

System.out.println("Element " + element);

for (int field = 0; field < arr.numberOfFields(); field++) {

MWArray fieldVal = arr.getField(fieldNames[field], element);

/* Recursively print substructures, give string display of other classes */

if (fieldVal instanceof MWStructArray)

{

System.out.println(" " + fieldNames[field] + ": nested structure:");

System.out.println("+++ Begin of \"" +

fieldNames[field] + "\" nested structure");

dispStruct((MWStructArray)fieldVal);

System.out.println("+++ End of \"" + fieldNames[field] +

"\" nested structure");

} else {

System.out.print(" " + fieldNames[field] + ": ");

System.out.println(fieldVal.toString());

}

7-32

Phone Book

}

}

}

}

The program does the following:

• Creates a structure array, using MWStructArray to represent the example
phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown:

thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:

result = thePhonebook.makephone(1, friends);

• Uses a try-catch block to catch and handle any exceptions.

7 Compile the getphone application using javac. When entering this command,
ensure there are no spaces between path names in the matlabroot argument.
For example, there should be no space between javabuilder.jar; and
.\distrib\phonebookdemo.jar in the following example. cd to your work
folder. Ensure getphone.java is in your work folder

• On Windows, execute this command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\phonebookdemo.jar getphone.java

• On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/phonebookdemo.jar getphone.java

8 Run the application.

To run the getphone.class file, do one of the following:

7-33

7 Sample Java® Applications

• On Windows, type:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\phonebookdemo.jar
getphone

• On UNIX, type:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/phonebookdemo.jar
getphone

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Oracle JDK and JRE. A certain
measure of cross-version compatibility resides in the Oracle software and it
may be possible to run MCR-based components with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the -d64
flag in the Java command. See “MATLAB® Builder™ JA Limitations” on page
12-3 for more specific information.

The getphone program should display the output:

Friends:
2x2 struct array with fields:

name

7-34

Phone Book

phone
Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:
Element 1

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

7-35

7 Sample Java® Applications

Optimization

In this section...

“Purpose” on page 7-36

“OptimDemo Package” on page 7-36

“Procedure” on page 7-37

Purpose
This example shows how to:

• Use the MATLAB Builder JA product to create a package (OptimDemo) that
applies MATLAB optimization routines to objective functions implemented
as Java objects.

• Access the MATLAB functions in a Java application (PerformOptim.java),
including use of the MWJavaObjectRef class to create a reference to a Java
object (BananaFunction.java) and pass it to the generated Java methods.

Note For complete reference information about the MWArray class
hierarchy, see the com.mathworks.toolbox.javabuilder Javadoc package
in matlabroot/help/toolbox/javabuilder/MWArrayAPI.

• Build and run the application.

OptimDemo Package
The OptimDemo package finds a local minimum of an objective function
and returns the minimal location and value. The package uses the
MATLAB optimization function fminsearch, and this example optimizes
the Rosenbrock banana function used in the fminsearch documentation.
The class, Optimizer, performs an unconstrained nonlinear optimization
on an objective function implemented as a Java object. A method of this
class, doOptim, accepts an initial guess and Java object that implements
the objective function, and returns the location and value of a local
minimum. The second method, displayObj, is a debugging tool that lists
the characteristics of a Java object. These two methods, doOptim and

7-36

Optimization

displayObj, encapsulate MATLAB functions. The MATLAB code for these
two methods is in doOptim.m and displayObj.m, which can be found in
matlabroot\toolbox\javabuilder\Examples\ObjectRefExample
\ObjectRefDemoComp.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:
matlabroot\toolbox\javabuilder\Examples\ObjectRefExample

b At the MATLAB command prompt, cd to the new ObjectRefExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are
required on a development machine. See “Configure Your Environment” on
page 1-7.

3 Write the MATLAB code that you want to access. This example uses
doOptim.m and displayObj.m, which are already in your work folder in
ObjectRefExample\ObjectRefDemoComp.

For reference, the code of doOptim.m is displayed here:

function [x,fval] = doOptim(h, x0)
%DOOPTIM Optimize a Java objective function
% This file is used as an example for the
% MATLAB Builder JA product.

% FMINSEARCH can't operate directly on Java
% objective functions,
% so you must create an anonymous function with the correct
% signature to wrap the Java object.
% Here, we assume our object has a method evaluateFunction()
% that takes an array of doubles and returns a double.
% This could become an Interface,
% and we could check that the object implements that Interface.
mWrapper = @(x) h.evaluateFunction(x);

7-37

7 Sample Java® Applications

% Compare two ways of evaluating the objective function
% These eventually call the same Java method, and return the
% same results.
directEval = h.evaluateFunction(x0)
wrapperEval = mWrapper(x0)

[x,fval] = fminsearch(mWrapper,x0)

For reference, the code of displayObj.m is displayed here:

function className = displayObj(h)
%DISPLAYOBJ Display information about a Java object
% This file is used as an example for the
% MATLAB Builder JA product.

h
className = class(h)
whos('h')
methods(h)

4 Select Library Compiler from the MATLAB App gallery.

5 Create a Java package using the Library Compiler to build a Java class that
wraps around your MATLAB code.

Use the following information as you work through this example in “Compile
a Java Package with the Library Compiler App” on page 4-2:

Project Name OptimDemo

Class Name Optimizer

File to compile doOptim.m
displayObj.m

6 Write source code for a class that implements an object function
to optimize. The sample application for this example is in
ObjectRefExample\ObjectRefDemoJavaApp\BananaFunction.java. The
program listing is shown here:

/* BananaFunction.java

* This file is used as an example for the MATLAB

7-38

Optimization

* Builder JA product.

*

* Copyright 2001-2011 The MathWorks, Inc.

*/

public class BananaFunction {

public BananaFunction() {}

public double evaluateFunction(double[] x)

{

/* Implements the Rosenbrock banana function described in

* the FMINSEARCH documentation

*/

double term1 = 100*java.lang.Math.pow((x[1]-Math.pow(x[0],2.0)),2.0);

double term2 = Math.pow((1-x[0]),2.0);

return term1 + term2;

}

}

The class implements the Rosenbrock banana function described in the
fminsearch documentation.

7 Write source code for an application that accesses the MATLAB
functions. The sample application for this example is in
ObjectRefExample\ObjectRefDemoJavaApp\PerformOptim.java. The
program listing is shown here:

/* PerformOptim.java
* This file is used as an example for the MATLAB
* Builder JA product.
*
* Copyright 2001-2011 The MathWorks, Inc.
*/

/* Necessary package imports */
import com.mathworks.toolbox.javabuilder.*;
import OptimDemo.*;

/*
* Demonstrates the use of the MWJavaObjectRef class

7-39

7 Sample Java® Applications

* Takes initial point for optimization as two arguments:
* PerformOptim -1.2 1.0
*/

class PerformOptim
{
public static void main(String[] args)
{
Optimizer theOptimizer = null; /* Stores component

instance */
MWJavaObjectRef origRef = null; /* Java object reference to

be passed to component */
MWJavaObjectRef outputRef = null; /* Output data extracted

from result */
MWNumericArray x0 = null; /* Initial point for optimization */
MWNumericArray x = null; /* Location of minimal value */
MWNumericArray fval = null; /* Minimal function value */
Object[] result = null; /* Stores the result */

try
{
/* If no input, exit */
if (args.length < 2)
{
System.out.println("Error: must input initial x0_1

and x0_2 position");
return;

}

/* Instantiate a new Builder component object */
/* This should only be done once per application instance */
theOptimizer = new Optimizer();

try {
/* Initial point --- parse data from text fields */
double[] x0Data = new double[2];
x0Data[0] = Double.valueOf(args[0]).doubleValue();
x0Data[1] = Double.valueOf(args[1]).doubleValue();
x0 = new MWNumericArray(x0Data, MWClassID.DOUBLE);
System.out.println("Using x0 =");

7-40

Optimization

System.out.println(x0);

/* Create object reference to objective function object */
BananaFunction objectiveFunction = new BananaFunction();
origRef = new MWJavaObjectRef(objectiveFunction);

/* Pass Java object to a MATLAB function that lists its
methods, etc */

System.out.println("*********************************");
System.out.println("** Properties of Java object **");
System.out.println("*********************************");
result = theOptimizer.displayObj(1, origRef);
MWArray.disposeArray(result);
System.out.println("** Finished DISPLAYOBJ **********");

/* Call the Java component to optimize the function */
/* using the MATLAB function FMINSEARCH */
System.out.println("**********************************");
System.out.println("** Unconstrained nonlinear optim**");
System.out.println("**********************************");
result = theOptimizer.doOptim(2, origRef, x0);
try {
System.out.println("** Finished DOOPTIM ****** *********");
x = (MWNumericArray)result[0];
fval = (MWNumericArray)result[1];

/* Display the results of the optimization */
System.out.println("Location of minimum: ");
System.out.println(x);
System.out.println("Function value at minimum: ");
System.out.println(fval.toString());

}
finally
{
MWArray.disposeArray(result);

}
}
finally
{
/* Free native resources */

7-41

7 Sample Java® Applications

MWArray.disposeArray(origRef);
MWArray.disposeArray(outputRef);
MWArray.disposeArray(x0);

}
}
catch (Exception e)
{
System.out.println("Exception: " + e.toString());

}

finally
{
/* Free native resources */
if (theOptimizer != null)
theOptimizer.dispose();

}
}

}

The program does the following:

• Instantiates an object of the BananaFunction class above to be optimized.

• Creates an MWJavaObjectRef that references the BananaFunction object,
as shown: origRef = new MWJavaObjectRef(objectiveFunction);

• Instantiates an Optimizer object

• Calls the displayObj method to verify that the Java object is being passed
correctly

• Calls the doOptim method, which uses fminsearch to find a local minimum
of the objective function

• Uses a try/catch block to handle exceptions

• Frees native resources using MWArray methods

8 Compile the PerformOptim.java application and BananaFunction.java
helper class using javac. When entering this command, ensure there
are no spaces between path names in the matlabroot argument. For
example, there should be no space between javabuilder.jar; and
.\distrib\OptimDemo.jar in the following example.

7-42

Optimization

a Open a Command Prompt window and cd to the
matlabroot\ObjectRefExample folder.

b Compile the application according to which operating system you are
running on:

• On Windows, execute this command:

javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\OptimDemo.jar BananaFunction.java
javac -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
.\distrib\OptimDemo.jar PerformOptim.java

• On UNIX, execute this command:

javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar BananaFunction.java
javac -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar PerformOptim.java

9 Execute the PerformOptim class file as follows:

On Windows, type:

java -classpath
.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar
.\distrib\OptimDemo.jar
PerformOptim -1.2 1.0

On UNIX, type:

java -classpath
.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:
./distrib/OptimDemo.jar
PerformOptim -1.2 1.0

7-43

7 Sample Java® Applications

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Oracle JDK and JRE. A certain
measure of cross-version compatibility resides in the Oracle software and it
may be possible to run MCR-based components with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note If you are running on the Mac 64-bit platform, you must add the -d64
flag in the Java command. See “MATLAB® Builder™ JA Limitations” on page
12-3 for more specific information.

When run successfully, the PerformOptim program should display the
following output:

Using x0 =
-1.2000 1.0000

** Properties of Java object **

h =

BananaFunction@1766806

className =

BananaFunction

Name Size Bytes Class Attributes

7-44

Optimization

h 1x1 BananaFunction

Methods for class BananaFunction:

BananaFunction getClass notifyAll
equals hashCode toString
evaluateFunction notify wait

** Finished DISPLAYOBJ ******************************

** Performing unconstrained nonlinear optimization **

directEval =

24.2000

wrapperEval =

24.2000

x =

1.0000 1.0000

fval =

8.1777e-10

Optimization successful
** Finished DOOPTIM *********************************
Location of minimum:
1.0000 1.0000

7-45

7 Sample Java® Applications

Function value at minimum:
8.1777e-10

7-46

Web Application

Web Application

In this section...

“Overview” on page 7-47

“Prerequisites” on page 7-47

“Locating the Example Files” on page 7-48

“Build Your Java Package” on page 7-49

“Compiling Your Java Code” on page 7-50

“Generating the Web Archive (WAR) File ” on page 7-50

“Running the Web Deployment Example” on page 7-51

“Using the Web Application” on page 7-51

Overview
This example demonstrates how to display a plot created by a Java servlet
calling a class created with the MATLAB Builder JA product over a Web
interface. This example uses MATLAB varargin and varargout for optional
input and output to the varargexample.m function. For more information
about varargin and varargout, see “Specifying Optional Arguments” on
page 6-18.

Prerequisites
This section describes what you need to know and do before you create the
Web deployment example.

• “Ensure You Have the Required Products” on page 7-47

• “Ensure Your Web Server Is Java Compliant” on page 7-48

• “Install the javabuilder.jar Library” on page 7-48

Ensure You Have the Required Products
The following products must be installed at their recommended release levels.

7-47

7 Sample Java® Applications

MATLAB, MATLAB Compiler, MATLAB Builder JA. This example was
tested with R2007b.

Java Development Kit (JDK). Ensure you have a JDK installed on your
system. You can download it from Oracle, Inc.

Note You should be using the same version of Java that ships with MATLAB.
To find out what version of Java MATLAB is running, enter the following
MATLAB command:

version -java

Caution MathWorks only supports the Oracle JDK and JRE. A certain
measure of cross-version compatibility resides in the Oracle software and it
may be possible to run MCR-based components with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Ensure Your Web Server Is Java Compliant
In order to run this example, your Web server must be capable of running
accepted Java frameworks like J2EE. Running the WebFigures example
(“Implement a Custom WebFigure” on page 8-9) also requires the ability to
run servlets in WARs (Web Archives).

Install the javabuilder.jar Library
Ensure that the javabuilder.jar library
(matlabroot/toolbox/javabuilder/jar/javabuilder.jar) has been
installed into your Web server’s common library folder.

Locating the Example Files
The example files are located in the
matlabroot\toolbox\javabuilder\Examples\java_web_vararg_demo
folder.

7-48

http://www.oracle.com/us/technologies/java/overview/index.html

Web Application

Contents of the Example Files
The example files contain the following three folders:

• mcode— Contains all of the MATLAB source code.

• JavaCode— Contains the required Java files and libraries.

• compile— Contains some helpful MATLAB functions to compile and clean
up the example.

Note As an alternative to compiling the example code manually and
creating the application WAR (Web Archive) manually, you can run
compileVarArgServletDemo.m in the compile folder. If you choose this
option and want to change the locations of the output files, edit the values
in getVarArgServletDemoSettings.m.

If you choose to run compileVarArgServletDemo.m, consult the readme file
in the download for additional information and then skip to “Running the
Web Deployment Example” on page 7-51.

Build Your Java Package
Build your Java package by compiling your code into a deployable .jar file.

1 Select the Library Compiler from the App gallery.

2 Create the Java package using the Library Compiler to build a Java class
that wraps around your MATLAB code.

To compile the Java package using the Library Compiler, use the following
information as you work through this example in “Compile a Java Package
with the Library Compiler App” on page 4-2:

Project Name vararg_java

Class Name vararg_javaclass

File to compile varargexample.m

7-49

7 Sample Java® Applications

Compiling Your Java Code
Use javac to compile the Java source file VarArgServletClass.java from
example folder JavaCode\src\VarArg.

javac.exe should be located in the bin folder of your JDK installation.

Ensure your classpath is set to include:

• javabuilder.jar (shipped with the MATLAB Builder JA product)

• vararg_java.jar (shipped with the MATLAB Builder JA product)

• servlet-api.jar (in the example folder JavaCode\lib)

For more details about using javac, see the Oracle Web site.

Generating the Web Archive (WAR) File
Web archive or WAR files are a type of Java Archive used to deploy J2EE and
JSP servlets. To run this example you will need to use the jar command
to generate the final WAR file that runs the application. To do this, follow
these steps:

1 Add javabuilder.jar to the WEB-INF\lib directory. For more
information, see “Helper Library Locations” in the MATLAB Application
Deployment Web Example Guide.

2 Copy the JAR file created using the MATLAB Builder JA product into the
JavaCode\build\WEB-INF\classes\VarArg example folder.

3 Copy the compiled Java class to the
JavaCode\build\WEB-INF\classes\VarArg example folder.

4 From the folder JavaCode, use the jar command to generate the final
WAR as follows:

jar cf VarArgServlet.war -C build .

7-50

http://www.oracle.com/us/technologies/java/overview/index.html

Web Application

Caution Don’t omit the . parameter above, which denotes the current
working folder.

Caution Placing javabuilder.jar in the WEB-INF/Lib folder for a single
Web application generally works. However, if another application also
places javabuilder.jar in its WEB-INF/Lib locations, problems may occur.
The native resources associated with javabuilder.jar can be loaded only
once in an application. Therefore, javabuilder.jar must only be visible to
a single class loader.

For more information about the jar command, refer to the Oracle Web site.

Running the Web Deployment Example
When you’re ready to run the application, do the following:

1 Install the VarArgServlet.war file into your Web server’s webapps folder.

2 Run the application by entering
http://localhost:port_number/VarArgServlet in the address field of
your Web browser, where port_number is the port that your Web server is
configured to use (usually 8080).

Using the Web Application
To use the application, do the following on the
http://localhost/VarArgServlet Web page:

7-51

http://www.oracle.com/us/technologies/java/overview/index.html

7 Sample Java® Applications

1 Enter any amount of numbers to plot in the Data to Plot field.

2 Select Line Color and Border Color using the Optional Input
drop-down lists. Note that these optional inputs are passed as varargin to
the compiled MATLAB code.

3 Select additional information you want to output, such as mean and
standard deviation, by clicking an option in the Optional Output area.
Note that these optional outputs are set as varargout from the compiled
MATLAB code.

4 Click Display Plot. Example output is shown below using the Mean
optional output.

7-52

Web Application

7-53

7 Sample Java® Applications

7-54

8

Deploying a Java Package
Over the Web

• “About the WebFigures Feature” on page 8-2

• “Preparing to Implement WebFigures for MATLAB® Builder™ JA” on
page 8-3

• “Implement a Custom WebFigure” on page 8-9

• “Advanced Configuration of a WebFigure” on page 8-19

8 Deploying a Java® Package Over the Web

About the WebFigures Feature
Using the WebFigures feature in MATLAB Builder JA, you display MATLAB
figures on a Web site for graphical manipulation by end users. This enables
them to use their graphical applications from anywhere on the Web without
the need to download MATLAB or other tools that can consume costly
resources. End users do not need to have the MATLAB Compiler Runtime
(MCR) installed on their systems to use WebFigures.

“Implement a Custom WebFigure” on page 8-9 guides you through
implementing the basic features of WebFigures, and lets you customize your
configuration depending on your server architecture.

Supported Renderers for WebFigures
The MATLAB Builder JA WebFigures feature uses the same renderer used
when the figure was originally created by the MATLAB renderer.

For more information about MATLAB renderers, see the MATLAB
documentation.

Note The WebFigures feature does not support the Painter renderer due to
technical limitations. If this renderer is requested, the renderer Zbuffer will
be invoked before the data is displayed on the Web page.

8-2

Preparing to Implement WebFigures for MATLAB® Builder™ JA

Preparing to Implement WebFigures for MATLAB Builder
JA

In this section...

“Your Role in the WebFigure Deployment Process” on page 8-3

“What You Need to Know to Implement WebFigures” on page 8-5

“Required Products” on page 8-5

“Assumptions About the Examples” on page 8-7

“Set DISPLAY on UNIX Systems” on page 8-8

Your Role in the WebFigure Deployment Process
Depending on your role in your organization, as well as a number of other
criteria, you may need to implement either the beginning or the advanced
configuration of WebFigures.

The table WebFigures for MATLAB® Builder™ JA Deployment Roles,
Responsibilities, and Tasks on page 8-3 describes some of the different roles,
or jobs, that MATLAB Builder JA users typically perform and which method
of configuration they would most likely use when implementing WebFigures
for MATLAB Builder JA.

WebFigures for MATLAB Builder JA Deployment Roles, Responsibilities, and Tasks

Role Typical Responsibilities Tasks

MATLAB programmer • Understand end-user
business requirements and
the mathematical models
needed to support them.

• Write MATLAB code.

• Build an executable
component with MATLAB
tools (usually with support
from a Java developer).

• Write and deploy MATLAB
code, such as that in
“Assumptions About the
Examples” on page 8-7.

• Use “Implement a Custom
WebFigure” on page 8-9
to easily create a graphic,
such as a MATLAB figure,

8-3

8 Deploying a Java® Package Over the Web

WebFigures for MATLAB Builder JA Deployment Roles, Responsibilities, and Tasks
(Continued)

Role Typical Responsibilities Tasks

• Package the component for
distribution to end users.

that the end user can
manipulate over the Web.

Application developer • Design and configure the IT
environment, architecture,
or infrastructure.

• Install deployable
applications along with
the proper version of the
MCR.

• Create mechanisms for
exposing application
functionality to the end
user.

• Use “Implement a Custom
WebFigure” on page 8-9
to easily create a graphic,
such as a MATLAB figure,
that the end user can
manipulate over the Web.

• Use “Advanced
Configuration of a
WebFigure” on page 8-19 to
create a flexible, scalable
implementation that can
meet a number of varied
architectural requirements.

8-4

Preparing to Implement WebFigures for MATLAB® Builder™ JA

What You Need to Know to Implement WebFigures
The following knowledge is assumed when you implement WebFigures for
MATLAB Builder JA:

• If you are a MATLAB programmer:

- Advanced to expert knowledge of MATLAB

• If you are a Java developer:

- Knowledge of how to create a J2EE Web site on a J2EE-compliant Web
server

- Experience deploying MATLAB applications is helpful

Required Products
Install the following products to implement WebFigures for MATLAB Builder
JA, depending on your role.

MATLAB Programmer

• MATLAB

• MATLAB Builder JA

• MATLAB Compiler

• MATLAB Compiler Runtime (see the system requirements at
http://www.mathworks.com/
support/sysreq/current_release/)

Java Developer

• Java Developer’s Kit (JDK) (see the list of supported compilers).

• J2EE compliant Web server, such as Apache Tomcat

• Java Runtime Environment (JRE) (see the system requirements).

8-5

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

8 Deploying a Java® Package Over the Web

Note At this time, only J2EE Web servers that use the Oracle JVM™
support WebFigures.

8-6

Preparing to Implement WebFigures for MATLAB® Builder™ JA

Assumptions About the Examples
To work with the examples in this chapter:

• Assume the following MATLAB function has been created:

function df = getKnot()
f = figure('Visible','off'); %Create a figure.

%Make sure it isn't visible.
knot; %Put something into figure.
df = webfigure(f); %Give figure to function

% and return the result.
close(f); %Close the figure.

end

• Assume that the function getKnot has been deployed in a Java pacakage
with a namespace of MyComponent.MyComponentclass.

• Assume the MATLAB Compiler Runtime (MCR) has been installed. If
not, refer to “Distributing MATLAB Code Using the MATLAB Compiler
Runtime (MCR)” on page 2-19 in the MATLAB Compiler documentation.

8-7

8 Deploying a Java® Package Over the Web

Set DISPLAY on UNIX Systems
If you are running a UNIX variant, such as Linux, WebFigures requires a
display to be available in the Web server’s environment in order for text
labels to be rendered properly.

Set the DISPLAY environment variable to a valid X Server before running
the WebFigure application.

8-8

Implement a Custom WebFigure

Implement a Custom WebFigure

Overview
By following the Quick Start procedure, both the WebFigure service and
the page that has the WebFigure embedded in it will be set up to reside
on a single server. This configuration allows you to quickly reference your
WebFigure from a JSP page with minimal configuration.

Setting Up the Web Server
Ensure that your Web server is properly configured with the required
components by performing these steps:

• “Install and Configure Apache Tomcat” on page 8-9

• “Install javabuilder.jar ” on page 8-11

• “Install the Web Archive (WAR)” on page 8-12

Install and Configure Apache Tomcat

1 Download Apache Tomcat from the Apache Web site.

2 Install the product using an available port number. Note the port number
you choose for future reference.

8-9

http://tomcat.apache.org/

8 Deploying a Java® Package Over the Web

3 Navigate to C:\Program Files\Apache Software Foundation\Tomcat
x.x\conf.

4 Using a text editor, edit tomcat-users.xml.

5 Browse to find the section listing sample users and roles, usually at the
end of the file:

Tomcat Role and User Listing in tomcat-users.xml

6 Remove comments from all the role and user statements (<!.. ..>).

7 Modify the <user statement, customizing it with a username and password
of your choice. In the example above, the chosen username is admin and
the password is borg. The roles= parameter assigns specific roles and
accorded privileges to this user, defined earlier in the <role statements.
See the Apache Tomcat documentation for further information regarding
users and roles.

8 Save and close tomcat-users.xml.

9 Open a browser session and enter this URL:

http://localhost:port_number/

For example, if you chose port number 8080 when you installed Tomcat,
you would enter: http://localhost:8080/. An image similar to the
following should appear:

8-10

Implement a Custom WebFigure

This image indicates that you have successfully set up Apache Tomcat.

Install javabuilder.jar

1 From MATLAB, navigate to the folder: C:\Program
Files\MATLAB\release_name\toolbox\javabuilder\jar\.

Caution This file uses native resources. It is critical that it exist in
your Web server’s class PATH only once. Embedding this file into Web
applications causes errors.

8-11

8 Deploying a Java® Package Over the Web

2 From this folder, copy javabuilder.jar to C:\Program Files\Apache
Software Foundation\Tomcat x.x\lib. By doing this, you are adding the
MATLAB Builder JA JAR file to Apache Tomcat folder of global JARs.

Install the Web Archive (WAR)

1 In the browser session you started in “Install and Configure Apache
Tomcat” on page 8-9, click the Manager App button, displayed in the
above screenshot.

2 On the Tomcat Web Application Manager page, find the sectionWAR
File to Deploy:

3 To the right of the field Select WAR file to upload, click Browse.

8-12

Implement a Custom WebFigure

4 Navigate to the folder C:\Program
Files\MATLAB\release_name\toolbox\javabuilder\jar\ and select
WebFigureQuickStart.war.

5 In the WAR File to Deploy section, click Deploy.

6 WebFigureQuickStart should now be listed in the Applications section of
the Tomcat Web Application Manager page:

You are now ready to create your first WebFigure.

Create the Default WebFigure

1 Start up your Web server.

2 Open a browser and navigate to the JSP file contained in the
WebFigureQuickStart application. If you are running this locally, the URL

8-13

8 Deploying a Java® Package Over the Web

is:
http://hostName:portNumber/WebFigureQuickStart/WebFigureExample.jsp

The following default figure page appears:

Behind the Scenes: How a WebFigure Is Referenced
The Web application that MathWorks ships contains a reference to a servlet
in WebFigureQuickStart.war (installed in “Setting Up the Web Server”
on page 8-9). The JSP file instantiates a deployed class that is also in
WebFigureQuickStart.war and attaches it to the application scope of the
server. It uses the JSP tag to reference the figure on the page.

Interact with the Default WebFigure
Interact with the default figure on the page using your mouse:

1 Click one of the three control icons at the top of the figure to select the
desired control.

8-14

Implement a Custom WebFigure

2 Select the region of the figure you want to manipulate.

3 Click and drag to manipulate the figure. For example, to zoom in the
figure, click the magnifying glass icon, then hover over the figure.

Create a Custom WebFigure
After you access the default figure, add one of your own figures:

1 Ensure you have done the following with the MATLAB code referenced in
“Assumptions About the Examples” on page 8-7 (or your own MATLAB
code):

• Tested the code

• Compiled the code using MATLAB Builder JA

• Successfully generated the yourcomponent.jar file from the compilation.

2 Test to ensure that your Web server is functioning. You can do this by
creating a JSP Web page, deploying it to your server, and then attempting
to access it.

3 Create a new Web application and an associated JSP file within that
application. In the web.xml file for your Web application (in the WEB-INF
folder in a Web application), add the following reference to the built-in
WebFigureServlet:

<servlet>

<servlet-name>WebFigures</servlet-name>

<servlet-class>

com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>WebFigures</servlet-name>

<url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

4 Copy MATLABROOT/toolbox/javabuilder/webfigures/webfigures.tld,
the WebFigures customer tag handler file, to the WEB-INF folder under your
Web application directory.

8-15

8 Deploying a Java® Package Over the Web

5 In the JSP file, add a reference to the WebFigure tag by including the
following line of code at the beginning of the file. The URI listed here is
for example purposes only.

<%@ taglib
prefix="wf"
uri="http://www.mathworks.com/builderja/webfigures.tld"

%>

6 Add an actual WebFigure tag in the body of the page:

<wf:web-figure />

7 At this point, test that the configuration is working properly following
the changes you previously made. By having an empty WebFigure tag,
the WebFigureService automatically displays the default WebFigure and
the resulting page should resemble that achieved in “Create the Default
WebFigure” on page 8-13.

8 Reference the previously built and deployed package from your JSP page:

a Add the following import statement to your JSP page:

<%@ page import="yourComponentsPackage.YourComponentsClass" %>

b Add the following import statement to invoke the WebFigure:

<%@ page import="com.mathworks.toolbox.javabuilder.webfigures.WebFigure" %>

c c. Add the following statement to enable access to MWJavaObjectRef:

<%@ page import="com.mathworks.toolbox.javabuilder.*" %>

9 Instantiate the deployed class and call the method that will return the
WebFigure, as in this sample code:

<%

MyComponentClass myDeployedComponent = null;

try {

//Instantiate the Deployed Component

myDeployedComponent = new MyComponentClass();

8-16

Implement a Custom WebFigure

try {

WebFigure webFigure = (WebFigure)

((MWJavaObjectRef)myDeployedComponent.getKnot(1)[0]).get();

//Get the WebFigure from your function's output

// and set it to the tag

request.getSession().setAttribute("YourFigure", webFigure);

}

catch(ClassCastException e)

{

throw new Exception

("

Issue casting deployed components outputs to WebFigure", e);

}

}

catch (Exception e) {

e.printStackTrace();

}

finally {

//Dispose of the Deployed Component

// (necessary since this has native resources).

myDeployedComponent.dispose();

}

%>

<wf:web-figure name="YourFigure" scope="session"/>

10 Run your application. Your custom WebFigure appears:

8-17

8 Deploying a Java® Package Over the Web

8-18

Advanced Configuration of a WebFigure

Advanced Configuration of a WebFigure

In this section...

“Overview” on page 8-19

“How Do WebFigures Work?” on page 8-21

“Installing WebFigureService” on page 8-22

“Getting the WebFigure Object from Your Method” on page 8-23

“Attach a WebFigure” on page 8-24

“Using the WebFigure JSP Tag to Reference a WebFigure” on page 8-26

“Getting an Embeddable String That References a WebFigure Attached to a
Cache” on page 8-29

Overview
The advanced configuration gives the experienced application developer
flexibility and control in configuring system architecture based on differing
needs. For example, with the WebFigureService and the Web page on
different servers, the administrator can optimally position the MCR (for
performance reasons) or place customer-sensitive customer data behind a
security firewall, if needed.

This section describes various ways to customize the basic WebFigures
implementation described in “Implement a Custom WebFigure” on page 8-9.

The advanced configuration offers more choices and adaptability for the user
more familiar with Web environments and related technology, as illustrated
by the following graphics.

8-19

8 Deploying a Java® Package Over the Web

8-20

Advanced Configuration of a WebFigure

How Do WebFigures Work?
When choosing the best architecture for your configuration, it is important to
understand the fundamental components that enable an application.

WebFigures is made up of several different components that work together:

• Your Web application

• Client-side code

• WebFigureService

8-21

8 Deploying a Java® Package Over the Web

• Your server’s cache

When you enable a user to rotate a figure, for example, you are using
standard AJAX techniques to request different static images depending on the
requested orientation. WebFiguresService (which is exposed by referencing
WebFigureServlet in web.xml) delivers the HTML and JavaScript® to a
browser, getting the defaults for a figure, and rendering a figure in any of its
available orientations.

Your Web application calls one of your deployed components to get the specific
WebFigure, and attaches it to your server’s cache for WebFiguresService to
use later. Your application also puts an HTML reference to your WebFigure
on a page. This can either be done automatically using the JSP tag or
manually by using WebFigureHtmlGenerator. This gives the client browser
what it needs to request the client-side code.

The client-side JavaScript AJAX code provides a user experience similar to
that in MATLAB when using a FIGURE. It provides rotation, zooming, and
panning in a highly usable medium by using a JavaScript application that
monitors for user interaction such as dragging or clicking with a mouse, and
calls back into WebFiguresService to service those requests.

For example, when a user selects the rotate icon and clicks in the
WebFigureTag and drags it, that drag translates to coordinates and issues a
request for the new rotated image from WebFiguresService. A rotating cube
is displayed so the user knows what orientation they are looking at. Since
there is no efficient way to pass an actual WebFigure from your application to
the client-side application and then back to WebFiguresService, the server’s
built-in cache is leveraged as a central repository.

Installing WebFigureService
In order for the client-side code to call back to request images, you need
a reference to the built-in servlet in the application’s web.xml file. This
reference should look like this:

<servlet>
<servlet-name>WebFigures</servlet-name>
<servlet-class>

com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet

8-22

Advanced Configuration of a WebFigure

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>WebFigures</servlet-name>
<url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

Note You can rename the servlet and its mapping. If you do, you must
reference it whenever you interact with either the WebFigureHtmlGenerator
or the JSP tag (using the root attribute) so it can call back to the servlet. It is
critical that the URL pattern you map to ends with the literal /*. This allows
all end points to be redirected to the servlet. To test this end point at any time,
navigate to it in a browser and you should see the default Web page. If you
have web.xml set correctly in your application, the URL will look something
like http://hostName:portNumber/yourWebApplication/WebFigures.

Getting the WebFigure Object from Your Method
In MATLAB Builder JA, when a WebFigure Java Object is created in
MATLAB code and returned, you convert that MWJavaObjectRef into a
regular WebFigure in order to access it. For example:

try
{

Object[] results = null;
try
{

//This assumes there is only a single option
// from your function
// and it has no inputs.
results = myDeployedComponent.getSurfPeaks(1);

//Since we know the only output is the WebFigure
// we get the MWJavaObjectRef from
// the Object Array.
//By calling "get" on the MWJavaObjectRef we
// retrieve the
// actual object from it.

8-23

8 Deploying a Java® Package Over the Web

WebFigure myFigure =
(WebFigure)((MWJavaObjectRef)results[0]).get();

}
finally
{

//Deployed Components use MWArrays which utilize
// Native Resources.
//The Java Garbage collector can not properly
// clean up this memory so it is important to
// dispose these resources.
MWArray.disposeArray(results);

}
}
catch(ClassCastException e)
{

throw new Exception
("WebFigure object was not

of Type WebFigure.", e);
}

Attach a WebFigure
All components access available WebFigures is by using Web server cache
mechanisms. This allows you to leverage built-in J2EE mechanisms to scale
your servers into a farm and automatically propagate the session across the
servers.

There are a number of ways to attach a WebFigure to a scope, depending
on the state:

• Attaching to the session cache session

• Attaching to the application cache application

Attaching to the Session Cache
This cache is visible only to the current user in a system and is usually used
to store user session-specific information.

8-24

Advanced Configuration of a WebFigure

Attaching to the session cache can be an ideal choice if the figure is valid only
for a specific user, at a certain time. To do this, add the following line of
code to a JSP scriptlet or a servlet:

//from a JSP scriplet or a servlet to the Session cache
request.getSession().setAttribute("myFigure", myFigure);

If you manually attached the figure, but want the JSP tag to reference it, you
can add the tag attributes:

name="myFigure" scope="session"

Note The name given to the JSP tag must match the one used to attach it to
a cache, and the name must be unique within that cache.

Attaching to the Application Cache
This cache is visible by all sessions in the current application. Attach to the
application cache if you want to attach the figure globally for every page and
servlet to use.

To attach to the Application scope, add the following line of code to a JSP
scriptlet or a servlet:

//from a JSP scriplet or a servlet to the Application cache

request.getSession().getServletContext().setAttribute("GlobalFigure",

myFigure);

If you manually attached the figure, but want the JSP tag to reference it, you
can add the tag attributes:

name="GlobalFigure" scope="application"

Note The name given to the JSP tag must match the one used to attach it to
a cache, and the name must be unique within that cache.

8-25

8 Deploying a Java® Package Over the Web

Using the WebFigure JSP Tag to Reference a
WebFigure
Once the WebFigure has been retrieved from the function output (see “Getting
the WebFigure Object from Your Method” on page 8-23), you can attach it to
one of your server’s caches and reference it from the JSP tag.

Initializing the JSP Tag
Reference the tag library by adding the following line to a JSP page:

<%@ taglib
prefix="wf"
uri="http://www.mathworks.com/builderja/webfigures.tld"

%>

Note This code references the .tld file from the WEB-INF folder under your
web application folder. This URI must be typed exactly as shown above for
the name to properly resolve the reference. Once this tag has been referenced,
you can add tags to the page similar to this:

<wf:web-figure />

Note If you use an empty tag as shown above, the default WebFigure
appears. To bind the tag to your WebFigure, see “Attach a WebFigure” on
page 8-24.

8-26

Advanced Configuration of a WebFigure

Attributes of a WebFigure Tag
The key attributes for the WebFigure tag are name and scope. For each tag,
use these parameters to indicate which figure to use in which cache on your
server. Assuming you have attached a figure to the session cache using the
string MyFigure (as shown in the “Attach a WebFigure” on page 8-24), the
JSP tag resembles this:

<wf:web-figure name="MyFigure" scope="session"/>

Use this table to reference the following WebFigure tag attributes.

WebFigure Tag Attributes and Their Default Values

Attribute Name Description Optional? Default Value

name Name used when
attaching your figure
to a cache. Case
sensitive.

Yes The name of
the default
WebFigure built into
WebFigureService. If
you provide an empty
WebFigure tag, this
figure is displayed.

scope Scope that your figure
has been saved to
(either application
or session).

Yes If this is not specified,
an error is thrown
unless the name is
also not specified. In
this case, the default
figure is attached to
the session scope and
is used.

style Style attribute that
you want embedded
and attached to the
iFrame.

Yes If this is not passed, a
basic iFrame is used.

height Height of the iFrame
that will be embedded.

Yes If this is not passed,
the height of the
WebFigure is
retrieved from cache.

8-27

8 Deploying a Java® Package Over the Web

WebFigure Tag Attributes and Their Default Values (Continued)

Attribute Name Description Optional? Default Value

width Width of the iFrame
that will be embedded.

Yes If this is not
passed, the width
of the WebFigure is
retrieved from cache.

root Name used to map the
WebFiguresServlet
for a figure.

Yes If this is not specified,
it is assumed to
be mapped to
WebFigures. If it is
specified to a relative
servlet end point, that
is used.

8-28

Advanced Configuration of a WebFigure

Getting an Embeddable String That References a
WebFigure Attached to a Cache
If you do not want to use the WebFigure JSP tag to display the figure, or want
a servlet to display it directly, use this method to get a snippet of HTML that
will embed an iFrame containing the figure in another page.

1 Create an instance of the WebFigureHtmlGenerator class using either a
scriptlet or a servlet. The constructor for this class has three overloads:

//The import statement needed to invoke this class

import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;

//WebFigureHtmlGenerator(HttpServletRequest servletRequest)

//This overload just takes the ServletRequest and will map the

// embed string to the same server and assumes that the

// WebFiguresService was mapped to WebFigures"

WebFigureHtmlGenerator htmlGenerator =

WebFigureHtmlGenerator(servletRequest);

//OR

//WebFigureHtmlGenerator(String webFigureServletNameMapping, HttpServletRequest

// servletRequest)

//This overload takes the ServletRequest and the name that

// the WebFigureServlet was mapped to.

//It will reference this servlet on the same server

WebFigureHtmlGenerator htmlGenerator =

WebFigureHtmlGenerator("SomeServletMappingName", servletRequest);

//OR

//WebFigureHtmlGenerator(String absolutePathName)

//This overload takes the absolute URL path to a server that has

// WebFiguresService running.

//This would be used if you have a cluster of servers that are all running

// WebFigureService

// a load balancer (all sharing cache state). Use

// this parameter to reference that base load balancer URL.

WebFigureHtmlGenerator htmlGenerator =

8-29

8 Deploying a Java® Package Over the Web

WebFigureHtmlGenerator("http://someLoadBalancer/someWebApplication/

WebFigureServletNameMapping");

2 Call the method to get the embedded string (getFigureEmbedString). Use
this table to specify appropriate attributes:

Attribute Name Attribute Type Description Optional Default Value

figure WebFigure WebFigure for
which you want
to create the
embedded string.

Yes This is used to
determine the
figure’s default
height and width
if no other is
provided .

name String Name used when
attaching your
figure to a cache.
Case sensitive.

No Not optional

scope String Scope that figure
has been saved to
(application or
session).

No Not optional

style String Embedded
attribute you
want attached to
the iFrame.

Yes If this is not
passed, a basic
iFrame is used.

height String Height of the
iFrame that will
be embedded.

Yes If this is not
passed, the
height of the
WebFigure is
retrieved from
cache. If the
WebFigure
cannot be found,
the MATLAB
default height for

8-30

Advanced Configuration of a WebFigure

Attribute Name Attribute Type Description Optional Default Value

a figure (420) is
used.

width String Width of the
iFrame that will
be embedded.

Yes If this is not
passed, the width
of the WebFigure
is retrieved
from cache. If
the WebFigure
cannot be found,
the MATLAB
default width for
a figure (560) is
used.

8-31

8 Deploying a Java® Package Over the Web

8-32

9

Working with MATLAB
Figures and Images

• “Your Role in Working with Figures and Images” on page 9-2

• “Create and Modify a MATLAB Figure” on page 9-3

• “Working with MATLAB Figure and Image Data” on page 9-6

9 Working with MATLAB® Figures and Images

Your Role in Working with Figures and Images
When you work with figures and images as a MATLAB programmer, you are
responsible for:

• Preparing a MATLAB figure for export

• Making changes to the figure (optional)

• Exporting the figure

• Cleaning up the figure window

When you work with figures and images as a front-end Web developer, some
of the tasks you are responsible for include:

• Getting a WebFigure from a deployed component

• Getting raw image data from a deployed component converted into a byte
array

• Getting a buffered image from a component

• Getting a buffered image or a byte array from a WebFigure

9-2

Create and Modify a MATLAB® Figure

Create and Modify a MATLAB Figure

In this section...

“Preparing a MATLAB Figure for Export” on page 9-3

“Changing the Figure (Optional)” on page 9-3

“Exporting the Figure” on page 9-4

“Cleaning Up the Figure Window” on page 9-4

“Modify and Export Figure Data” on page 9-5

MATLAB Programmer

Role Knowledge Base Responsibilities

MATLAB
programmer

• MATLAB expert

• No IT experience

• No access to IT systems

• Develops models; implements in
MATLAB

• Uses tools to create a component that
is used by the Java developer

Preparing a MATLAB Figure for Export

1 Create a figure window. For example:

h = figure;

2 Add graphics to the figure. For example:

surf(peaks);

Changing the Figure (Optional)
Optionally, you can change the figure numerous ways. For example:

Alter Visibility

set(h, 'Visible', 'off');

9-3

9 Working with MATLAB® Figures and Images

Change Background Color

set(h, 'Color', [.8,.9,1]);

Alter Orientation and Size

width=500;
height=500;
rotation=30;
elevation=30;
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);

Exporting the Figure
Export the contents of the figure in one of two ways:

WebFigure
To export as a WebFigure:

returnFigure = webfigure(h);

Image Data
To export image data, for example:

imgform = 'png';
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imgform, ...
`outputType', `uint8');

Cleaning Up the Figure Window
To close the figure window:

close(h);

9-4

Create and Modify a MATLAB® Figure

Modify and Export Figure Data

WebFigure
function returnFigure = getWebFigure()
h = figure;
set(h, 'Visible', 'off');
surf(peaks);
set(h, 'Color', [.8,.9,1]);
returnFigure = webfigure(h);
close(h);

Image Data
function returnByteArray = getImageDataOrientation(height,

width, elevation, rotation, imageFormat)
h = figure;
set(h, 'Visible', 'off');
surf(peaks);
set(h, 'Color', [.8,.9,1]);
set(h, 'Position', [0, 0, width, height]);
view([rotation, elevation]);
returnByteArray = figToImStream(`figHandle', h, ...

`imageFormat', imageFormat, ...
`outputType', `int8');

close(h);

9-5

9 Working with MATLAB® Figures and Images

Working with MATLAB Figure and Image Data

In this section...

“For More Comprehensive Examples” on page 9-6

“Working with Figures” on page 9-6

“Working with Images” on page 9-7

Front-End Web Developer

Role Knowledge Base Responsibilities

Front-end Web
developer

• No MATLAB experience

• Minimal IT experience

• Expert at usability and Web
page design

• Minimal access to IT systems

• Expert at JSP

• As service consumer, manages
presentation and usability

• Creates front-end applications

• Integrates MATLAB code with
language-specific frameworks and
environments

• Integrates WebFigures with the rest
of the Web page

For More Comprehensive Examples
This section contains code snippets intended to demonstrate specific
functionality related to working with figure and image data.

To see these snippets in the context of more fully-functional multi-step
examples, see the “The MATLAB Application Deployment Web Example
Guide”.

Working with Figures

Getting a Figure From a Deployed Component
For information about how to retrieve a figure from a deployed component,
see “Implement a Custom WebFigure” on page 8-9

9-6

Working with MATLAB® Figure and Image Data

Working with Images

Getting Encoded Image Bytes from an Image in a Component

Java

public byte[] getByteArrayFromDeployedComponent()
{

Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;
try
{

byteImageOutput =
deployment.getImageDataOrientation(

1, //Number Of Outputs
500, //Height
500, //Width
30, //Elevation
30, //Rotation
"png" //Image Format

);

numericImageByteArray =
(MWNumericArray)byteImageOutput[0];

return numericImageByteArray.getByteData();
}
finally
{

MWArray.disposeArray(byteImageOutput);
}

}

Getting a Buffered Image in a Component

Java

public byte[] getByteArrayFromDeployedComponent()
{

9-7

9 Working with MATLAB® Figures and Images

Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;
try
{

byteImageOutput =
deployment.getImageDataOrientation(

1, //Number Of Outputs
500, //Height
500, //Width
30, //Elevation
30, //Rotation
"png" //Image Format

);

numericImageByteArray =
(MWNumericArray)byteImageOutput[0];

return numericImageByteArray.getByteData();
}
finally
{

MWArray.disposeArray(byteImageOutput);
}

}

public BufferedImage getBufferedImageFromDeployedComponent()
{

try
{

byte[] imageByteArray =
getByteArrayFromDeployedComponent()

return ImageIO.read
(new ByteArrayInputStream(imageByteArray));

}
catch(IOException io_ex)
{

io_ex.printStackTrace();
}

}

9-8

10

Creating Scalable Web
Applications Using RMI

• “Using Remote Method Invocation (RMI)” on page 10-2

• “RMI Prerequisites” on page 10-3

• “Run the Client and Server on a Single Machine” on page 10-4

• “Run the Client and Server on Separate Machines” on page 10-8

• “Use Native Java with Cell Arrays and Struct Arrays” on page 10-9

• “Additional RMI Examples” on page 10-16

10 Creating Scalable Web Applications Using RMI

Using Remote Method Invocation (RMI)
You can expand your application’s throughput capacity by taking advantage
of the MATLAB Builder JA product’s use of RMI, the Java native remote
procedure call (RPC) mechanism. The builder’s implementation of RMI
technology provides for automatic generation of interface code to enable
components to start in separate processes, on one or more computers, making
your applications scalable and adaptable to future performance demands.

The following example uses RMI in the following ways:

• Running a client and server on a single machine

• Running a client and server on separate machines

Tip While running on UNIX, ensure you use : as the path separator in calls
to java and javac.

; is used as a path separator only on Windows.

10-2

RMI Prerequisites

RMI Prerequisites
See “Web Application” on page 7-47 for information on properly setting up
your Java environment before you run the example in this section.

10-3

10 Creating Scalable Web Applications Using RMI

Run the Client and Server on a Single Machine
The following example shows how to run two separate processes to initialize
MATLAB struct arrays.

Note You do not need the MCR installed on the client side. Return values
from the MCR can be automatically converted using the marshalOutputs
Boolean in the RemoteProxy class. See the Javadoc API documentation for
details at matlabroot/help/toolbox/javabuilder/MWArrayAPI.

1 Compile the MATLAB Builder JA pacakage by issuing the following
command at the MATLAB command prompt:

mcc -W 'java:dataTypesComp,dataTypesClass'
createEmptyStruct.m

updateField.m -v

2 Compile the server Java code by issuing the following javac
command. Ensure there are no spaces between javabuilder.jar; and
directory_containing_pacakage.

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
directory_containing_pacakage\dataTypesComp.jar
DataTypesServer.java

You can find DataTypesServer.java in:

matlabroot\toolbox\javabuilder\Examples\RMIExamples
\DataTypes\DataTypesDemoJavaApp

3 Compile the client Java code by issuing the following javac command.
Ensure there are no spaces between javabuilder.jar; and
directory_containing_pacakage.

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

10-4

Run the Client and Server on a Single Machine

directory_containing_pacakage\dataTypesComp.jar
DataTypesClient.java

4 Run the client and server as follows:

a Open two command windows on DOS or UNIX, depending on the
platform you are using.

b If running Windows, ensure that matlabroot/runtime/arch is defined
on the system path. If running UNIX, ensure LD_LIBRARY_PATH and
DYLD_LIBRARY_PATH are set properly.

c Run the server by issuing the following java command. Ensure there
are no spaces between dataTypesComp.jar; and matlabroot.

java -classpath
.;directory_containing_pacakage\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar
-Djava.rmi.server.codebase=

"file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar
file:///directory_containing_pacakage/dataTypesComp.jar"

DataTypesServer

d Run the client by issuing the following java command. Ensure there are
no spaces between dataTypesComp.jar; and matlabroot.

java -classpath
.;directory_containing_pacakage\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar
DataTypesClient

You can find DataTypesClient.java in:
matlabroot\toolbox\javabuilder\Examples\RMIExamples\DataTypes
\DataTypesDemoJavaApp.

If successful, the following output appears in the Command Window
running the server:

Please wait for the server registration notification.

Server registered and running successfully!!

EVENT 1: Initializing the structure on server

10-5

10 Creating Scalable Web Applications Using RMI

and sending it to client:

Initialized empty structure:

Name: []

Address: []

##################################

EVENT 3: Partially initialized structure as received by server:

Name: []

Address: [1x1 struct]

Address field as initialized from the client:

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

##################################

EVENT 4: Updating 'Name' field before

sending the structure back to the client:

Name: 'The MathWorks'

Address: [1x1 struct]

##################################

If successful, the following output appears in the Command Window
running the client:

Running the client application!!

EVENT 2: Initialized structure as received in client applications:

Name: []

Address: []

10-6

Run the Client and Server on a Single Machine

Updating the 'Address' field to :

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

#################################

EVENT 5: Final structure as received by client:

Name: 'The MathWorks'

Address: [1x1 struct]

Address field:

Street: '3, Apple Hill Drive'

City: 'Natick'

State: 'MA'

Zip: '01760'

#################################

10-7

10 Creating Scalable Web Applications Using RMI

Run the Client and Server on Separate Machines
To implement RMI with a client on one machine and a server on another,
you must:

1 Change how the server is bound to the system registry.

2 Redefine how the client accesses the server.

After this is done, follow the steps in “Run the Client and Server on a
Single Machine” on page 10-4.

10-8

Use Native Java® with Cell Arrays and Struct Arrays

Use Native Java with Cell Arrays and Struct Arrays

In this section...

“Why Use Native Type Cell Arrays and Struct Arrays?” on page 10-9

“Native Type Data Marshaling Prerequisites” on page 10-10

“Native Java Cell and Struct” on page 10-10

Why Use Native Type Cell Arrays and Struct Arrays?
In Java, there is no direct representation available for MATLAB-specific
struct and cell arrays.

As a result, when an instance of MWStructArray or MWCellArray is
converted to a Java native type using the toArray() method, the output is a
multi-dimensional Object array which can be difficult to process.

When you use MATLAB® Builder™ JA components with RMI, however, you
have control over how the server sends the results of MATLAB function calls
back to the client. The server can be set to marshal the output to the client as
an MWArray (com.mathworks.toolbox.javabuilder package) sub-type or as a
Java™ native data type. The Java native data type representation of MWArray
subtypes is obtained by invoking the toArray() method by the server.

Using Java native representations of MATLAB struct and cell arrays is
recommended if both of these are true:

• You have MATLAB functions on a server with MATLAB struct or cell data
types as inputs or outputs

• You do not want or need to install an MCR on your client machines

Using Native Types Does Not Require a Client-Side MCR
The classes in the com.mathworks.extern.java package
(in javabuilder.jar) do not need an MCR. The names
of the classes in this package are the same as those in
com.mathworks.toolbox.javabuilder — allowing the end-user to
easily create instances of com.mathworks.extern.java.MWStructArray
or com.mathworks.extern.java.MWCellArray that work the same as the

10-9

10 Creating Scalable Web Applications Using RMI

like-named classes in com.mathworks.toolbox.javabuilder— on a machine
that does not have an MCR.

The availability of an MCR on the client machine dictates how the server
should be set for marshaling MATLAB functions, since the MWArray class
hierarchy can be used only with an MCR. If the client machine does not have
an MCR available, the server returns the output of toArray() for cell or
struct arrays as instances of com.mathworks.extern.java.MWStructArray
or com.mathworks.extern.java.MWCellArray.

Native Type Data Marshaling Prerequisites
Even though client machines don’t need to have an MCR, they do need to
have javabuilder.jar since it contains the com.mathworks.extern.java
package.

Please refer to the Javadoc
(matlabroot/help/toolbox/javabuilder/MWArrayAPI) for more information
about classes in all MATLAB Builder JA packages.

Native Java Cell and Struct

Before You Run the Example
Before you run this example, note the following:

• This example demonstrates how to implement RMI when the client and the
server are running on the same machine. See “Run the Client and Server
on Separate Machines” on page 10-8 if you would like to do otherwise.

• On UNIX, use : as the path separator in calls to java and javac. Use ;
as a path separator on Windows.

• Only update the server system path with the location of the MCR. The
client does not need access to the MCR.

• This example is shipped in the
matlab\toolbox\javabuilder\Examples\RMIExamples\NativeCellStruct
directory.

• Ensure that:

10-10

Use Native Java® with Cell Arrays and Struct Arrays

- On Windows systems, matlabroot/runtime/arch is on the system path.

- On UNIX systems, LD_LIBRARY_PATH and DYLD_LIBRARY_PATH are set
properly. See “Modifying the Path” in the MATLAB Compiler User’s
Guide for further information on setting the path.

Running the Example

Note Be sure to enter the following as single, unbroken commands.

1 Use the following mcc command to build the package:

mcc -W
'java:dataTypesComp,dataTypesClass' createEmptyStruct.m

updateField.m -v

2 Compile the server’s Java code:

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
directory_containing_pacakage\dataTypesComp.jar
NativeCellStructServer.java

3 Compile the client’s Java code:

javac -classpath
matlabroot\toolbox\javabuilder\jar\javabuilder.jar;
directory_containing_pacakage\dataTypesComp.jar
NativeCellStructClient.java

4 Prepare to run the server and client applications by opening two DOS or
UNIX command windows—one for client and one for server.

5 Run the server:

java -classpath
.;directory_containing_pacakage\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar
-Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/

10-11

10 Creating Scalable Web Applications Using RMI

jar/javabuilder.jar file:///
directory_containing_pacakage/dataTypesComp.jar"
NativeCellStructServer

6 Run the client:

java -classpath
.;directory_containing_pacakage\dataTypesComp.jar;
matlabroot\toolbox\javabuilder\jar\javabuilder.jar
NativeCellStructClient

10-12

Use Native Java® with Cell Arrays and Struct Arrays

7 If your application has run successfully, the output will display as follows:

• Server output:

Please wait for the server registration notification.
Server registered and running successfully!!

EVENT 1: Initializing the structure on server and
sending it to client:
Initialized empty structure:

Name: ' '
Address: []

##################################

EVENT 3: Partially initialized structure as received
by server:

Name: ' '
Address: [1x1 struct]

Address field as initialized from the client:

Street: '3, Apple Hill Drive'
City: 'Natick'
State: 'MA'
Zip: '01760'

##################################

EVENT 4: Updating 'Name' field before sending the
structure back to the client

Name: 'The MathWorks'
Address: [1x1 struct]

##################################

10-13

10 Creating Scalable Web Applications Using RMI

• Client output:

Running the client application!!

EVENT 2: Initialized structure as received in client
applications:

1x1 struct array with fields:
Name
Address

Updating the 'Address' field to :

1x1 struct array with fields:
Street
City
State
Zip

#################################

EVENT 5: Final structure as received by client:

1x1 struct array with fields:
Name
Address

Address field:

1x1 struct array with fields:
Street
City
State
Zip

#################################

10-14

Use Native Java® with Cell Arrays and Struct Arrays

10-15

10 Creating Scalable Web Applications Using RMI

Additional RMI Examples
For more examples of RMI implementation, see the examples in
matlabroot/toolbox/javabuilder/Examples/RMIExamples.

10-16

11

Troubleshooting

11 Troubleshooting

Common MATLAB Builder JA Error Messages
Exception in thread "main" java.lang.UnsatisfiedLinkError: Failed to
find the library mclmcrrt712.dll, required by MATLAB Builder JA,
on java.library.path

Install the MCR or add it to the MATLAB path.

Failed to find the library <library_name>, required by MATLAB
Builder JA, on java.library.path.

This error commonly occurs on Linux or Mac systems if the
LD_LIBRARY_PATH variable is not set.

See “MCR Path Settings for Development and Testing” and “MCR Path
Settings for Run-time Deployment” in the MATLAB Compiler documentation.

javac is not recognized as an internal or external command,
operable program or batch file.

This is a common error when the javac executable (javac.exe), installed
with Java, is not on your system PATH.

Edit your system environment variables and add your Java installation folder
to the PATH variable.

11-2

12

Reference Information for
Java

• “Requirements for the MATLAB® Builder™ JA Product” on page 12-2

• “Data Conversion Rules” on page 12-4

• “Programming Interfaces Generated by the MATLAB® Builder™ JA
Product” on page 12-8

• “MWArray Class Specification” on page 12-13

• “Deployment Product Terms” on page 12-14

12 Reference Information for Java®

Requirements for the MATLAB Builder JA Product

In this section...

“System Requirements” on page 12-2

“Path Modifications Required for Accessibility” on page 12-2

“MATLAB® Builder™ JA Limitations” on page 12-3

System Requirements
System requirements and restrictions on use for the MATLAB Builder JA
product are as follows:

• The MATLAB Compiler product must be installed.

• Java Development Kit must be installed.

• Java Runtime Environment (JRE) that is used by MATLAB and MCR.

Note You should be using the same version of Java that ships with
MATLAB. To find out what version of Java MATLAB is running, enter
the following MATLAB command:

version -java

Caution MathWorks only supports the Oracle JDK and JRE. A certain
measure of cross-version compatibility resides in the Oracle software and
it may be possible to run MCR-based components with non-Oracle JDKs
under some circumstances—however, compatibility is not guaranteed.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®,
you must add the following DLLs to your Windows path:

JavaAccessBridge.dll

12-2

Requirements for the MATLAB® Builder™ JA Product

WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

MATLAB Builder JA Limitations
In general, limitations and restrictions on the use of the MATLAB Builder
JA product are the same as those for the MATLAB Compiler product. See
“MATLAB Compiler Limitations” in the MATLAB Compiler documentation
for details.

MATLAB Java External Interface
JAR files created by MATLAB Builder JA cannot be loaded back into
MATLAB with the MATLAB Java External Interface.

MATLAB Objects
In addition, the MATLAB Builder JA product does not support MATLAB
object data types (for example, Time Series objects). In other words, MATLAB
objects can not "pass" the boundary of MATLAB/Java, but you are free to
use objects in your MATLAB code.

12-3

12 Reference Information for Java®

Data Conversion Rules

In this section...

“Java to MATLAB Conversion” on page 12-4

“MATLAB to Java Conversion” on page 12-6

“Unsupported MATLAB Array Types” on page 12-7

Java to MATLAB Conversion
The following table lists the data conversion rules for converting Java data
types to MATLAB types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

The conversion rules apply not only when calling your own methods, but
also when calling constructors and factory methods belonging to the MWArray
classes.

When calling an MWArray class method constructor, supplying a specific data
type causes the builder to convert to that type instead of the default.

Java to MATLAB Conversion Rules

Java Type MATLAB Type

double double

float single

byte int8

int int32

short int16

long int64

char char

12-4

Data Conversion Rules

Java to MATLAB Conversion Rules (Continued)

Java Type MATLAB Type

boolean logical

java.lang.Double double

java.lang.Float single

java.lang.Byte int8

java.lang.Integer int32

java.lang.Long int64

java.lang.Short int16

java.lang.Number double

Note Subclasses of java.lang.Number not listed above are
converted to double.

java.lang.Boolean logical

java.lang.Character char

java.lang.String char

Note A Java string is converted to a 1-by-N array of char with
N equal to the length of the input string.

An array of Java strings (String[]) is converted to an M-by-N
array of char, with M equal to the number of elements in the
input array and N equal to the maximum length of any of the
strings in the array.

Higher dimensional arrays of String are converted similarly.

In general, an N-dimensional array of String is converted to an
N+1 dimensional array of char with appropriate zero padding
where supplied strings have different lengths.

12-5

12 Reference Information for Java®

MATLAB to Java Conversion
The following table lists the data conversion rules for converting MATLAB
data types to Java types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the types listed.

MATLAB to Java Conversion Rules

MATLAB Type Java Type (Primitive) Java Type (Object)

cell Not applicable Object

Note Cell arrays are constructed and
accessed as arrays of MWArray.

structure Not applicable Object

Note Structure arrays are constructed and
accessed as arrays of MWArray.

char char java.lang.Character

double double java.lang.Double

single float java.lang.Float

int8 byte java.lang.Byte

int16 short java.lang.Short

int32 int java.lang.Integer

int64 long java.lang.Long

12-6

Data Conversion Rules

MATLAB to Java Conversion Rules (Continued)

MATLAB Type Java Type (Primitive) Java Type (Object)

uint8 byte java.lang.ByteJava has no unsigned type
to represent the uint8 used in MATLAB.
Construction of and access to MATLAB
arrays of an unsigned type requires
conversion.

uint16 short java.lang.shortJava has no unsigned
type to represent the uint16 used in
MATLAB. Construction of and access
to MATLAB arrays of an unsigned type
requires conversion.

uint32 int java.lang.IntegerJava has no unsigned
type to represent the uint32 used in
MATLAB. Construction of and access
to MATLAB arrays of an unsigned type
requires conversion.

uint64 long java.lang.LongJava has no unsigned type
to represent the uint64 used in MATLAB.
Construction of and access to MATLAB
arrays of an unsigned type requires
conversion.

logical boolean java.lang.Boolean

Function handle Not supported

Java class Not supported

User class Not supported

Unsupported MATLAB Array Types
Java has no unsigned types to represent the uint8, uint16, uint32, and
uint64 types used in MATLAB. Construction of and access to MATLAB
arrays of an unsigned type requires conversion.

12-7

12 Reference Information for Java®

Programming Interfaces Generated by the MATLAB
Builder JA Product

In this section...

“APIs Based on MATLAB Function Signatures” on page 12-8

“Standard API” on page 12-9

“mlx API” on page 12-11

“Code Fragment: Signatures Generated for the myprimes Example” on
page 12-11

APIs Based on MATLAB Function Signatures
The builder generates two kinds of interfaces to handle MATLAB function
signatures.

• A standard signature in Java

This interface specifies input arguments for each overloaded method as
one or more input arguments of class java.lang.Object or any subclass
(including subclasses of MWArray). The standard interface specifies return
values, if any, as a subclass of MWArray.

• mlx API

This interface allows the user to specify the inputs to a function as an
Object array, where each array element is one input argument. Similarly,
the user also gives the mlx interface a preallocated Object array to hold
the outputs of the function. The allocated length of the output array
determines the number of desired function outputs.

The mlx interface may also be accessed using java.util.List containers
in place of Object arrays for the inputs and outputs. Note that if List
containers are used, the output List passed in must contain a number of
elements equal to the desired number of function outputs.

For example, this would be incorrect usage:

java.util.List outputs = new ArrayList(3);
myclass.myfunction(outputs, inputs); // outputs 0 elements!

12-8

Programming Interfaces Generated by the MATLAB® Builder™ JA Product

And this would be the correct usage:

java.util.List outputs = Arrays.asList(new Object[3]);
myclass.myfunction(outputs, inputs); // list has 3 elements

Typically you use the standard interface when you want to call MATLAB
functions that return a single array. In other cases you probably need to
use the mlx interface.

Standard API
The standard calling interface returns an array of one or more MWArray
objects.

The standard API for a generic function with none, one, more than one, or a
variable number of arguments, is shown in the following table.

Arguments API to Use

Generic MATLAB function
function [Out1, Out2, ...,

varargout] =
foo(In1, In2, ...,
InN, varargin)

API if there are no input
arguments public Object[] foo(

int numArgsOut
)

API if there is one input
argument public Object[] foo(

int numArgsOut,
Object In1
)

12-9

12 Reference Information for Java®

Arguments API to Use

API if there are two to N
input arguments public Object[] foo(

int numArgsOut,
Object In1,
Object In2,
...
Object InN
)

API if there are optional
arguments, represented by
the varargin argument

public Object[] foo(
int numArgsOut,
Object in1,
Object in2,
...,

Object InN,
Object varargin
)

Details about the arguments for these samples of standard signatures are
shown in the following table.

Argument Description Details About Argument

numArgsOut Number of
outputs

An integer indicating the number of
outputs you want the method to return.
To return no arguments, omit this
argument.

The value of numArgsOut must be less
than or equal to the MATLAB function
nargout.

The numArgsOut argument must always
be the first argument in the list.

In1, In2,
...InN

Required input
arguments

All arguments that follow numArgsOut
in the argument list are inputs to the
method being called.

12-10

Programming Interfaces Generated by the MATLAB® Builder™ JA Product

Argument Description Details About Argument

Specify all required inputs first. Each
required input must be of class MWArray
or any class derived from MWArray.

varargin Optional inputs You can also specify optional inputs if
your MATLAB code uses the varargin
input: list the optional inputs, or put
them in an Object[] argument, placing
the array last in the argument list.

Out1, Out2,
...OutN

Output
arguments

With the standard calling interface, all
output arguments are returned as an
array of MWArrays.

mlx API
For a function with the following structure:

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ...,

InN, varargin)

The builder generates the following API, as the mlx interface:

public void foo (List outputs, List inputs) throws MWException;
public void foo (Object[] outputs, Object[] inputs)

throws MWException;

Code Fragment: Signatures Generated for the
myprimes Example
For a specific example, look at the myprimes method. This method has one
input argument, so the builder generates three overloaded methods in Java.

When you add myprimes to the class myclass and build the class, the builder
generates the myclass.java file. A fragment of myclass.java is listed to
show overloaded implementations of the myprimes method in the Java code.

12-11

12 Reference Information for Java®

The standard interface specifies inputs to the function within the argument
list and outputs as return values. The second implementation demonstrates
the feval interface, the third implementation shows the interface to be used
if there are no input arguments, and the fourth shows the implementation
to be used if there is one input argument. Rather than returning function
outputs as a return value, the feval interface includes both input and output
arguments in the argument list. Output arguments are specified first,
followed by input arguments.

/* mlx interface List version */
public void myprimes(List lhs, List rhs) throws MWException
{

(implementation omitted)
}
/* mlx interface Array version */
public void myprimes(Object[] lhs, Object[] rhs)

throws MWException
{

(implementation omitted)
}

/* Standard interface no inputs*/
public Object[] myprimes(int nargout) throws MWException

{
(implementation omitted)

}
/* Standard interface one input*/
public Object[] myprimes(int nargout, Object n)

throws MWException
{

(implementation omitted)
}

See “APIs Based on MATLAB Function Signatures” on page 12-8 for details
about the interfaces.

12-12

MWArray Class Specification

MWArray Class Specification
For complete reference information about the MWArray class hierarchy,
see com.mathworks.toolbox.javabuilder.MWArray, which is in the
matlabroot/help/toolbox/javabuilder/MWArrayAPI/ folder.

Note For matlabroot, substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

12-13

12 Reference Information for Java®

Deployment Product Terms
A

Add-in— A Microsoft Excel add-in is an executable piece of code that can be
actively integrated into a Microsoft Excel application. Add-ins are front-ends
for COM components, usually written in some form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and
interfaces that is used to develop software applications. Typically an API is
used to provide access to specific functionality. See MWArray.

Application — An end user-system into which a deployed functions or
solution is ultimately integrated. Typically, the end goal for the Deployment
customer is integration of a deployed MATLAB function into a larger
enterprise environment application. The deployment products prepare
the MATLAB function for integration by wrapping MATLAB code with
enterprise-compatible source code, such as C, C++, C# (.NET), F#, and Java
code.

Assembly— An executable bundle of code, especially in .NET. For example,
after building a deployable .NET component with MATLAB Builder NE,
the .NET developer integrates the resulting .NET assembly into a larger
enterprise C# application. See Executable.

B

Binary — See Executable.

Boxed Types— Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other
object-oriented languages, that is a prototype for an object in an object-oriented
language. It is analogous to a derived type in a procedural language. A class
is a set of objects which share a common structure and behavior. Classes
relate in a class hierarchy. One class is a specialization (a subclass) of another

12-14

Deployment Product Terms

(one of its superclasses) or comprises other classes. Some classes use other
classes in a client-server relationship. Abstract classes have no members, and
concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler terminology, to compile a component
involves generating a binary that wraps around MATLAB code, enabling it to
execute in various computing environments. For example, when MATLAB
code builds with MATLAB Builder JA, a Java wrapper provides Java code
that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Builder EX, the executable back-end code
behind a Microsoft Excel add-in. In MATLAB Builder NE, an executable
component, to be integrated with Microsoft COM applications.

Component — In MATLAB, a generic term used to describe the wrappered
MATLAB code produced by MATLAB Compiler. You can plug these
self-contained bundles of code you plug into various computing environments.
The wrapper enables the compatibility between the computing environment
and your code.

Console application — Any application that is executed from a system
command prompt window.

CTF archive (Component Technology File)— The Component Technology File
(CTF) archive is embedded by default in each generated binary by MATLAB
Compiler. It houses the deployable package. All MATLAB-based content in
the CTF archive uses the Advanced Encryption Standard (AES) cryptosystem.
See “Additional Details” in the MATLAB Compiler documentation.

D

Data Marshaling — Data conversion, usually from one type to another.
Unless a MATLAB deployment customer is using type-safe interfaces, data
marshaling—as from mathematical data types to MathWorks data types such
as represented by the MWArray API—must be performed manually, often
at great cost.

Deploy— The act of integrating a component into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

12-15

12 Reference Information for Java®

DLL — Dynamic link library. Microsoft’s implementation of the shared
library concept for Windows. Using DLLs is much preferred over the previous
technology of static (or non-dynamic) libraries, which had to be manually
linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable— An executable bundle of code, made up of binary bits (zeros and
ones) and sometimes called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see
Structs.

Fields and Properties— In the context of .NET, Fields are specialized classes
used to hold data. Properties allow users to access class variables as if they
were accessing member fields directly, while actually implementing that
access through a class method.

H

Helper files — Files that support the main file or the file that calls all
supporting functions. Add resources that depend upon the function that
calls the supporting function to the Shared Resources and Helper Files
section of the Deployment Tool GUI. Other examples of supporting files or
resources include:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

• Code you want to remain private

• Code from other programs that you want to compile and link into the
main file

I

12-16

Deployment Product Terms

Integration — Combining a deployed component’s functionality with
functionality that currently exists in an enterprise application. For example,
a customer creates a mathematical model to forecast trends in certain
commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance)
the deployed financial model must be integrated with existing C# applications,
run in the .NET enterprise environment. Integration is usually performed by
an IT developer, rather than a MATLAB Programmer, in larger environments.

Instance— For the definition of this term in context of MATLAB Production
Server software, see MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java ARchive)
aggregates many files into one. Software developers use JARs to distribute
Java applications or libraries, in the form of classes and associated metadata
and resources (text, images, etc.). Computer users can create or extract JAR
files using the jar command that comes with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java
interface built into MATLAB software.

JDK— The Java Development Kit is a free Oracle product which provides the
environment required for programming in Java. The JDK™ is available for
various platforms, but most notably Oracle Solaris™ and Microsoft Windows.
To build components with MATLAB Builder JA, download the JDK that
corresponds to the latest version of Java supported by MATLAB.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development
Kit (JDK) required to run Java programs. It comprises the Java Virtual
Machine, the Java platform core classes, and supporting files. It does not
include the compiler, debugger, or other tools present in the JDK. The JRE™
is the smallest set of executables and files that constitute the standard Java
platform.

M

12-17

12 Reference Information for Java®

Magic Square— A square array of integers arranged so that their sum is the
same when added vertically, horizontally, or diagonally.

MATLAB Production Server Client — In the MATLAB Production Server
software, clients are applications written in a language supported by
MATLAB Production Server that call deployed functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB
Production Server containing at least one server and one client. Each
configuration of the software usually contains a unique set of values in the
server configuration file, main_config.

MATLAB Production Server Server Instance — A logical server configuration
created using the mps-new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment
of MATLAB programs within your production systems, enabling you to
incorporate numerical analytics in enterprise applications. When you use this
software, Web, database, and enterprise applications connect to MATLAB
programs running on MATLAB Production Server via a lightweight client
library, isolating the MATLAB programs from your production system.
MATLAB Production Server software consists of one or more servers and
clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler command that compiles and links C and
C++ source files into standalone applications or shared libraries. For more
information, see the mbuild function reference page.

mcc — The MATLAB command that invokes MATLAB Compiler. It is the
command-line equivalent of using the compiler apps.

MCR — The MATLAB Compiler Runtime is an execution engine made
up of the same shared libraries. MATLAB uses these libraries to enable
the execution of MATLAB files on systems without an installed version of
MATLAB. To deploy a component, you package the MCR along with it. Before
you use the MCR on a system without MATLAB, run the MCR Installer.

12-18

Deployment Product Terms

MCR Installer — An installation program run to install the MATLAB
Compiler Runtime on a development machine that does not have an installed
version of MATLAB. Find out more about the MCR Installer by reading
“Distributing MATLAB Code Using the MATLAB Compiler Runtime (MCR)”.

MCR Singleton — See Shared MCR Instance.

MCR Workers — A MATLAB Compiler Runtime session. Using MATLAB
Production Server software, you have the option of specifying more than one
MCR session, using the --num-workers options in the server configurations
file.

Method Attribute — In the context of .NET, a mechanism used to specify
declarative information to a .NET class. For example, in the context of client
programming with MATLAB Production Server software, you specify method
attributes to define MATLAB structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB
representations of standard mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface
(API) for exchanging data between your application and MATLAB. Using
MWArray, you marshal data from traditional mathematical types to a form
that can be processed and understood by MATLAB data type mxArray. There
are different implementations of the MWArray proxy for each application
programming language.

P

Package — The act of bundling the deployed component, along with the
MCR and other files, into an installer that can be distributed to others. The
compiler apps place the installer in the for_redistribution subfolder. In
addition to the installer, the compiler apps generate a number of lose artifacts
that can be used for testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool— A pool of threads, in the context of server management using MATLAB
Production Server software. Servers created with the software do not allocate
a unique thread to each client connection. Rather, when data is available on

12-19

12 Reference Information for Java®

a connection, the required processing is scheduled on a pool, or group, of
available threads. The server configuration file option --num-threads sets
the size of that pool (the number of available request-processing threads)
in the master server process.

Process Identification File (PID File)— A file that documents informational
and error messages relating to a running server instance of MATLAB
Production Server software.

Program— A bundle of code that is executed to achieve a purpose. Programs
usually are written to automate repetitive operations through computer
processing. Enterprise system applications usually consist of hundreds or
even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and
Properties.

Proxy — A software design pattern typically using a class, which functions
as an interface to something else. For example, MWArray is a proxy for
programmers who need to access the underlying type mxArray.

S

Server Instance— See MATLAB Production Server Server Instance.

Shared Library— Groups of files that reside in one space on disk or memory
for fast loading into Windows applications. Dynamic-link libraries (DLLs) are
Microsoft’s implementation of the shared library concept in for Microsoft
Windows.

Shared MCR Instance — When using MATLAB Builder NE or MATLAB
Builder JA, you can create a shared MCR instance, also known as a singleton.
For builder NE, this only applies to COM components. When you invoke
MATLAB Compiler with the -S option through the builders (using either mcc
or the Deployment Tool), a single MCR instance is created for each COM
or Java component in an application. You reuse this instance by sharing it
among all subsequent class instances within the component. Such sharing
results in more efficient memory usage and eliminates the MCR startup cost
in each subsequent class instantiation. All class instances share a single
MATLAB workspace and share global variables in the MATLAB files used

12-20

Deployment Product Terms

to build the component. MATLAB Builder NE and MATLAB Builder EX
are designed to create singletons by default for .NET assemblies and COM
components, respectively. For more information, see “Sharing an MCR
Instance in COM or Java Applications”.

Standalone application — Programs that can be executed on their own and
encapsulate a self contained set of MATLAB functionality.

State— The present condition of a the MATLAB, or MCR, runtime. MATLAB
functions often carry state in the form of variable values. The MATLAB
Workspace itself also maintains information about global variables and path
settings. When deploying functions that carry state, you must often take
additional steps to ensure state retention when deploying applications that
use such functions.

Structs— MATLAB Structures. Structs are MATLAB arrays with elements
that you access using textual field designators. Fields are data containers
that store data of a specific MATLAB type.

System Compiler — A key part of Interactive Development Environments
(IDEs) such as Microsoft Visual Studio®.

T

Thread — A portion of a program that can run independently of and
concurrently with other portions of the program. See pool for additional
information on managing the number of processing threads available to a
server instance.

Type-safe interface — An API that minimizes explicit type conversions by
hiding the MWArray type from the calling application. Using “Generate and
Implement Type-Safe Interfaces”, for example, .NET Developers work directly
with familiar native data types. You can avoid performing tedious MWArray
data marshaling by using type-safe interfaces.

W

Web Application Archive (WAR)—In computing, a Web Application Archive is
a JAR file used to distribute a collection of JavaServer pages, servlets, Java

12-21

12 Reference Information for Java®

classes, XML files, tag libraries, and static Web pages (HTML and related
files) that together constitute a Web application.

Webfigure— A MathWorks representation of a MATLAB figure, rendered on
the Web. Using the WebFigures feature, you display MATLAB figures on a
Web site for graphical manipulation by end users. This enables them to use
their graphical applications from anywhere on the Web, without the need to
download MATLAB or other tools that can consume costly resources.

Windows Communication Foundation (WCF)— The Windows Communication
Foundation™ is an application programming interface in the .NET
Framework for building connected, service-oriented, Web-centric applications.
WCF is designed in accordance with service oriented architecture principles
to support distributed computing where services are consumed by client
applications.

12-22

13

Function Reference

deploytool

Purpose Compile and package functions for external deployment

Syntax deploytool [-win32] [[[-build] | [-project]]project_name]

Description deploytool opens the MATLAB Compiler app.

deploytool project_name opens the MATLAB Compiler app with
the project preloaded.

deploytool -build project_name runs the MATLAB Compiler to
build the specified project. The installer is not generated.

deploytool -package project_name runs the MATLAB Compiler to
build and package the specified project. The installer is generated.

deploytool -win32 instructs the compiler to build a 32-bit application
on a 64-bit system when the following are true:

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

13-2

figToImStream

Purpose Stream out figure “snapshot” as byte array encoded in format specified,
creating signed byte array in .png format

Syntax output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)

Description The output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)
command also accepts user-defined variables for any of the input
arguments, passed as a comma-separated list

The size and position of the printed output depends on the figure’s
PaperPosition[mode] properties.

Options figToImStream('figHandle', Figure_Handle, ...) allows you to
specify the figure output to be used. The Default is the current image

figToImStream('imageFormat', [png|jpg|bmp|gif]) allows you to
specify the converted image format. Default value is png.

figToImStream('outputType', [int8!uint8]) allows you to specify
an output byte data type. int8 (signed byte) is used primarily for Java
primitive byte type; Default value is int8.

Examples Convert the current figure to a signed png byte array:

surf(peaks)
bytes = figToImStream

Convert a specific figure to an unsigned bmp byte array:

f = figure;
surf(peaks);
bytes = figToImStream('figHandle', f, ...

'imageFormat', 'bmp', ...
'outputType', 'uint8');

13-3

mcc

Purpose Compile MATLAB functions for deployment

Syntax mcc {-e} | {-m} [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder]
[-f filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename

mcc -l [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -c [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -W cpplib:component_name -T link:lib [-a filename]… [-B
filename[:arg]…] [-C] [-d outFolder] [-f filename] [-g] [-I directory]…
[-K] [-M string] [-N] [-o filename] [-p path]… [-R option] [-S] [-v] [-w
option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W dotnet:component_name,[className], [framework_version],
security, remote_type -T link:lib [-a filename]… [-B filename[:arg]…]
[-C] [-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N]
[-p path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename… [class{className:[mfilename]…}]…

mcc -W excel:component_name,[className], [version] -T link:lib [-a
filename]… [-b] [-B filename[:arg]…] [-C] [-d outFolder] [-f filename]
[-I directory]… [-K] [-M string] [-N] [-p path]… [-R option] [-u] [-v]
[-w option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W 'java:packageName,[className]' [-a filename]… [-b]
[-B filename[:arg]…] [-C] [-d outFolder] [-f filename] [-I
directory]… [-K] [-M string] [-N] [-p path]… [-R option]
[-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem] filename…
[class{className:[mfilename]…}]…

13-4

mcc

mcc -W CTF:component_name [-a filename]… [-b] [-B filename[:arg]…]
[-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N] [-p
path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem]
filename… [class{className:[mfilename]…}]…

mcc -?

Description mcc -m mfilename compiles the function into a standalone application.

This is equivalent to -W main -T link:exe.

mcc -e mfilename compiles the function into a standalone application
that does not open an MS-DOS® command window.

This is equivalent to -W WinMain -T link:exe.

mcc -l mfilename... compiles the listed functions into a C shared
library and generates C wrapper code for integration with other
applications.

This is equivalent to -W lib:libname -T link:lib.

mcc -c mfilename... generates C wrapper code for the listed
functions.

This is equivalent to -W lib:libname -T codegen.

mcc -W cpplib:component_name -T link:lib mfilename...
compiles the listed functions into a C++ shared library and generates
C++ wrapper code for integration with other applications.

mcc -W
dotnet:component_name,className,framework_version,security,
remote_type -T link:lib mfilename... creates a .NET
component from the specified files.

13-5

mcc

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the .NET class to be created.

• framework_version— Specifies the version of the Microsoft .NET
Framework you want to use to compile the component. Specify either:

- 0.0— Use the latest supported version on the target machine.

- version_major.version_minor — Use a specific version of the
framework.

Features are often version-specific. Consult the documentation
for the feature you are implementing to get the Microsoft .NET
Framework version requirements.

• security — Specifies whether the component to be created is a
private assembly or a shared assembly.

- To create a private assembly, specify Private.

- To create a shared assembly, specify the full path to the encryption
key file used to sign the assembly.

• remote_type— Specifies the remoting type of the component. Values
are remote and local.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W excel:component_name,className, version -T link:lib
mfilename... creates a Microsoft Excel component from the specified
files.

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

13-6

mcc

• className — Specifies the name of the class to be created. If you
do not specify the class name, mcc uses the component_name as the
default.

• version — Specifies the version of the component specified as
major.minor.

- major— Specifies the major version number. If you do not specify
a version number, mcc uses the latest version.

- minor— Specifies the minor version number. If you do not specify
a version number, mcc uses the latest version.

mcc -W 'java:packageName,className' mfilename... creates a
Java package from the specified files.

• packageName — Specifies the name of the Java package
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the class to be created. If you do
not specify the class name, mcc uses the last item in packageName.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W CTF:component_name instructs the compiler to create a
deployable CTF archive that is deployable in a MATLAB Production
Server instance.

mcc -? displays help.

Tip You can issue the mcc command either from the MATLAB
command prompt or the DOS or UNIX command line.

13-7

mcc

Options -a Add to Archive

Add a file to the CTF archive using

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a
options are permitted. MATLAB Compiler looks for these files on the
MATLAB path, so specifying the full path name is optional. These files
are not passed to mbuild, so you can include files such as data files.

If only a folder name is included with the -a option, the entire contents
of that folder are added recursively to the CTF archive. For example:

mcc -m hello.m -a ./testdir

In this example, testdir is a folder in the current working folder. All
files in testdir, as well as all files in subfolders of testdir, are added
to the CTF archive, and the folder subtree in testdir is preserved in
the CTF archive.

If a wildcard pattern is included in the file name, only the files in
the folder that match the pattern are added to the CTF archive and
subfolders of the given path are not processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the CTF archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are
added to the CTF archive and subfolders of ./testdir are not processed
recursively.

All files added to the CTF archive using -a (including those that match
a wildcard pattern or appear under a folder specified using -a) that do
not appear on the MATLAB path at the time of compilation causes
a path entry to be added to the deployed application’s run-time path

13-8

mcc

so that they appear on the path when the deployed application or
component executes.

When files are included, the absolute path for the DLL and header files
is changed. The files are placed in the .\exe_mcr\ folder when the CTF
file is expanded. The file is not placed in the local folder. This folder
is created from the CTF file the first time the EXE file is executed.
The isdeployed function is provided to help you accommodate this
difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes.
It ensures that the executable looks for the DLL- and H-files in the
exe_mcr\exe folder.

Caution

If you use the -a flag to include a file that is not on the MATLAB path,
the folder containing the file is added to the MATLAB dependency
analysis path. As a result, other files from that folder might be included
in the compiled application.

Note Currently, * is the only supported wildcard.

Note If the -a flag is used to include custom Java classes, standalone
applications work without any need to change the classpath as long
as the Java class is not a member of a package. The same applies for
JAR files. However, if the class being added is a member of a package,
the MATLAB code needs to make an appropriate call to javaaddpath to
update the classpath with the parent folder of the package.

13-9

mcc

-b Generate Excel Compatible Formula Function

Generate a Visual Basic file (.bas) containing the Microsoft Excel
Formula Function interface to the COM object generated by MATLAB
Compiler. When imported into the workbook Visual Basic code, this
code allows the MATLAB function to be seen as a cell formula function.
This option requires MATLAB Builder EX.

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the
specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command-line
options and corresponding arguments and/or other file names. The file
might contain other -B options. A bundle file can include replacement
parameters for Compiler options that accept names and version
numbers. See “Using Bundle Files to Build MATLAB Code” for a list of
the bundle files included with MATLAB Compiler.

-C Do Not Embed CTF Archive by Default

Override automatically embedding the CTF archive in C/C++ and
main/Winmain shared libraries and standalone binaries by default.

-d Specified Folder for Output

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.

-f Specified Options File

Override the default options file with the specified options file. Use

-f filename

13-10

mcc

to specify filename as the options file when calling mbuild. This
option lets you use different ANSI compilers for different invocations of
MATLAB Compiler. This option is a direct pass-through to mbuild.

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated
by MATLAB Compiler. It also causes mbuild to pass appropriate
debugging flags to the system C/C++ compiler. The debug option
lets you backtrace up to the point where you can identify if the
failure occurred in the initialization of MCR, the function call, or the
termination routine. This option does not let you debug your MATLAB
files with a C/C++ debugger.

-G Debug Only

Same as -g.

-I Add Folder to Include Path

Add a new folder path to the list of included folders. Each -I option
adds a folder to the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for
MATLAB files, followed by directory2. This option is important for
standalone compilation where the MATLAB path is not available.

-K Preserve Partial Output Files

Direct mcc to not delete output files if the compilation ends prematurely,
due to error.

The default behavior of mcc is to dispose of any partial output if the
command fails to execute successfully.

-M Direct Pass Through

Define compile-time options. Use

-M string

13-11

mcc

to pass string directly to mbuild. This provides a useful mechanism for
defining compile-time options, e.g., -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M
option is used.

-N Clear Path

Passing -N effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab

• matlabroot\toolbox\local

• matlabroot\toolbox\compiler\deploy

It also retains all subfolders of the above list that appear on the
MATLAB path at compile time. Including -N on the command line lets
you replace folders from the original path, while retaining the relative
ordering of the included folders. All subfolders of the included folders
that appear on the original path are also included. In addition, the -N
option retains all folders that you included on the path that are not
under matlabroot\toolbox.

-o Specify Output Name

Specify the name of the final executable (standalone applications only).
Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable,
possibly platform-dependent, extension is added to the specified name
(e.g., .exe for Windows standalone applications).

13-12

mcc

-p Add Folder to Path

Use in conjunction with the required option -N to add specific folders
(and subfolders) under matlabroot\toolbox to the compilation
MATLAB path in an order sensitive way. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an
absolute path, it is assumed to be under the current working folder. The
rules for how these folders are included follow.

• If a folder is included with -p that is on the original MATLAB path,
the folder and all its subfolders that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB
path, that folder is not included in the compilation. (You can use
-I to add it.)

If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the
folder is added to the head of the path, as it normally would be with -I.

-R Run-Time

Provides MCR run-time options. The syntax is as follows:

-R option

Option Description

-logfile
filename

Specify a log file name.

-nodisplay Suppress the MATLAB nodisplay run-time warning.

-nojvm Do not use the Java Virtual Machine (JVM).

13-13

mcc

Option Description

-startmsg Customizable user message displayed at MCR
initialization time.

-completemsg Customizable user message displayed when MCR
initialization is complete.

Note Not all -R options are available for all mcc targets.

Caution

When running on Mac OS X, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

-S Create Singleton MCR Context

The standard behavior for the MCR is that every instance of a
class gets its own runtime context. This runtime context includes a
global MATLAB workspace for variables such as the path and a base
workspace for each function in the class. If multiple instances of a class
are created, each instance gets an independent context. This ensures
that changes made to the global, or base, workspace in one instance of
the class does not effect other instances of the same class.

In a singleton MCR, all instances of a class share the runtime context.
If multiple instances of a class are created, the use the runtime context
created by the first instance. This saves start up time and some
resources. However, any changes made to the global workspace or the
base workspace by one instance impacts all of the class instances. For
example, if instance1 creates a global variable A in a singleton MCR,
the instance2 will be able to use variable A.

13-14

mcc

-T Specify Target Stage

Specify the output target phase and type.

Use the syntax -T target to define the output type. Target values
are as follow.

Target Description

compile:exe Generate a C/C++ wrapper file
plus compile C/C++ files to object
form suitable for linking into a
standalone application.

compile:lib Generate a C/C++ wrapper file
plus compile C/C++ files to object
form suitable for linking into a
shared library/DLL.

link:exe Same as compile:exe plus links
object files into a standalone
application.

link:lib Same as compile:lib plus
links object files into a shared
library/DLL.

-u Register COM Component for the Current User

Register COM component for the current user only on the development
machine. The argument applies only for generic COM component and
Microsoft Excel add-in targets only.

-v Verbose

Display the compilation steps, including:

• MATLAB Compiler version number

• The source file names as they are processed

• The names of the generated output files as they are created

• The invocation of mbuild

13-15

mcc

The -v option passes the -v option to mbuild and displays information
about mbuild.

-w Warning Messages

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings. This table lists the syntaxes.

Syntax Description

-w list Generate a table that maps <string> to
warning message for use with enable,
disable, and error. “Warning Messages”,
lists the same information.

-w enable Enable complete warnings.

-w
disable[:<string>]

Disable specific warnings associated with
<string>. “Warning Messages”, lists
the <string> values. Omit the optional
<string> to apply the disable action to
all warnings.

-w enable[:<string>] Enable specific warnings associated with
<string>. “Warning Messages”, lists
the <string> values. Omit the optional
<string> to apply the enable action to all
warnings.

-w error[:<string>] Treat specific warnings associated with
<string> as an error. Omit the optional
<string> to apply the error action to all
warnings.

13-16

mcc

Syntax Description

-w off[:<string>]
[<filename>]

Turn warnings off for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned off when generated by specific
<filename>s.

-w on[:<string>]
[<filename>]

Turn warnings on for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned on when generated by specific
<filename>s.

It is also possible to turn warnings on or off in your MATLAB code.

For example, to turn warnings off for deployed applications (specified
using isdeployed) in your startup.m, you write:

if isdeployed
warning off

end

To turn warnings on for deployed applications, you write:

if isdeployed
warning on

end

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are true:

• You have a 32-bit installation of MATLAB.

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

13-17

mcc

• You are running from a Windows command line.

-Y License File

Use

-Y license.lic

to override the default license file with the specified argument.

13-18

libraryCompiler

Purpose Build and package functions for use in external applications

Syntax libraryCompiler [-win32] [[[-build] | [-project]]project_name]

Description libraryCompiler opens the MATLAB shared library compiler for the
creation of a new compiler project

libraryCompiler project_name opens the MATLAB shared library
compiler app with the project preloaded.

libraryCompiler -build project_name runs the MATLAB shared
library compiler to build the specified project. The installer is not
generated.

libraryCompiler -package project_name runs the MATLAB shared
library compiler to build and package the specified project. The installer
is generated.

libraryCompiler -win32 instructs the compiler to build a 32-bit
application on a 64-bit system when you use the same MATLAB
installation root (matlabroot) for both 32-bit and 64-bit versions of
MATLAB.

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

13-19

libraryCompiler

13-20

A

Using MATLAB Compiler
on Mac or Linux

• “Overview” on page A-2

• “Installing MATLAB® Compiler™ on Mac or Linux” on page A-3

• “Writing Applications for Mac or Linux” on page A-4

• “Building Your Application on Mac or Linux ” on page A-10

• “Testing Your Application on Mac or Linux” on page A-11

• “Set MCR Paths on Mac or Linux with Scripts” on page A-12

A Using MATLAB® Compiler™ on Mac or Linux®

Overview
If you use MATLAB Compiler on Linux or Macintosh systems, use this
appendix as a quick reference to common tasks.

A-2

Installing MATLAB® Compiler™ on Mac or Linux®

Installing MATLAB Compiler on Mac or Linux

In this section...

“Installing MATLAB® Compiler™” on page A-3

“Custom Configuring Your Options File” on page A-3

“Install Apple Xcode from DVD on Maci64” on page A-3

Installing MATLAB Compiler
See “Supported ANSI® C and C++ UNIX Compilers” for general installation
instructions and information about supported compilers.

Custom Configuring Your Options File
To modify the current linker settings, or disable a particular set of warnings,
locate your options file for your “UNIX Operating System”, and view
instructions for “Changing the Options File”.

Install Apple Xcode from DVD on Maci64
When installing on 64-bit Macintosh systems, install the Apple Xcode from
the installation DVD.

A-3

A Using MATLAB® Compiler™ on Mac or Linux®

Writing Applications for Mac or Linux

In this section...

“Objective-C/C++ Applications for Apple’s Cocoa API” on page A-4

“Where’s the Example Code?” on page A-4

“Preparing Your Apple Xcode Development Environment” on page A-4

“Build and Run the Sierpinski Application” on page A-5

“Running the Sierpinski Application” on page A-7

Objective-C/C++ Applications for Apple’s Cocoa API
Apple Xcode, implemented in the Objective-C language, is used to develop
applications using the Cocoa framework, the native object-oriented API for
the Mac OS X operating system.

This article details how to deploy a graphical MATLAB application with
Objective C and Cocoa, and then deploy it using MATLAB Compiler.

Where’s the Example Code?
You can find example Apple Xcode, header, and project files in
matlabroot/extern/examples/compiler/xcode.

Preparing Your Apple Xcode Development
Environment
To run this example, you should have prior experience with the Apple Xcode
development environment and the Cocoa framework.

The example in this article is ready to build and run. However, before you
build and run your own applications, you must do the following (as has been
done in our example code):

1 Build the shared library with MATLAB Compiler using either the
Deployment Tool or mcc.

A-4

Writing Applications for Mac or Linux®

2 Compile application code against the component’s header file and link the
application against the component library and libmwmclmcrrt. See “Set
MCR Paths on Mac or Linux with Scripts” on page A-12 and “Solving
Problems Related to Setting MCR Paths on Mac or Linux” on page A-12 for
information about and MCR paths and libmwmclmcrrt.

3 In your Apple Xcode project:

• Specify mcc in the project target (Build Component Library in the
example code).

• Specify target settings in HEADER_SEARCH_PATHS.

– Specify directories containing the component header.

– Specify the path matlabroot/extern/include.

– Define MWINSTALL_ROOT, which establishes the install route using
a relative path.

• Set LIBRARY_SEARCH_PATHS to any directories containing the component’s
shared library, as well as to the path matlabroot/runtime/maci64.

Build and Run the Sierpinski Application
In this example, you deploy the graphical Sierpinski function (sierpinski.m,
located at matlabroot/extern/examples/compiler).

function [x, y] = sierpinski(iterations, draw)
% SIERPINSKI Calculate (optionally draw) the points
% in Sierpinski's triangle

% Copyright 2004 The MathWorks, Inc.

% Three points defining a nice wide triangle
points = [0.5 0.9 ; 0.1 0.1 ; 0.9 0.1];

% Select an initial point
current = rand(1, 2);

% Create a figure window
if (draw == true)

f = figure;
hold on;

A-5

A Using MATLAB® Compiler™ on Mac or Linux®

end

% Pre-allocate space for the results, to improve performance
x = zeros(1,iterations);
y = zeros(1,iterations);

% Iterate
for i = 1:iterations

% Select point at random
index = floor(rand * 3) + 1;

% Calculate midpoint between current point and random point
current(1) = (current(1) + points(index, 1)) / 2;
current(2) = (current(2) + points(index, 2)) / 2;

% Plot that point
if draw, line(current(1),current(2));, end

x(i) = current(1);
y(i) = current(2);

end

if (draw)
drawnow;

end

1 Using the Mac Finder, locate the Apple Xcode project
(matlabroot/extern/examples/compiler/xcode). Copy files to
a working directory to run this example, if needed.

2 Open sierpinski.xcodeproj. The development environment starts.

3 In the Groups and Files pane, select Targets.

4 Click Build and Run. The make file runs that launches MATLAB
Compiler (mcc).

A-6

Writing Applications for Mac or Linux®

Running the Sierpinski Application
Run the Sierpinski application from the build output directory. The
following GUI appears:

MATLAB Sierpinski Function Implemented in the Mac Cocoa Environment

1 In the Iterations field, enter an integer such as 10000:

A-7

A Using MATLAB® Compiler™ on Mac or Linux®

2 Click Draw Triangle. The following figure appears:

A-8

Writing Applications for Mac or Linux®

A-9

A Using MATLAB® Compiler™ on Mac or Linux®

Building Your Application on Mac or Linux

In this section...

“Compiling Your Application with the Compiler Apps” on page A-10

“Compiling Your Application with the Command Line” on page A-10

Compiling Your Application with the Compiler Apps
When running a graphical interface from your Mac or Linux desktop, use
“Create and Install a Standalone Application from MATLAB Code” as a
template for building a standalone application with the Application Compiler.
Use “Create a C/C++ Shared Library from MATLAB Code” for creating a
shared library with the Library Compiler.

Compiling Your Application with the Command Line
For compiling your application at the command line, there are separate
Macintosh and non-Macintosh instructions for Mac or Linux platforms.

On Non-Mac i64 Platforms
Use the section “Input and Output Files” for lists of files produced and
supplied to mcc when building a “Standalone Executable”, “C Shared Library”,
or “C++ Shared Library”.

On Maci64
Use the section “Input and Output Files” for lists of files produced and
supplied to mcc when building a “Macintosh 64 (Maci64)” application.

A-10

Testing Your Application on Mac or Linux®

Testing Your Application on Mac or Linux
On Windows, deployed applications automatically modify the system PATH
variable.

On Mac OS X or Linux, deployed applications do not modify the system PATH
variable. You must perform this step manually.

A-11

A Using MATLAB® Compiler™ on Mac or Linux®

Set MCR Paths on Mac or Linux with Scripts
When you build applications, associated shell scripts (run_application.sh)
are automatically generated in the same folder as your binary. By running
these scripts, you can conveniently set the path to your MCR location.

Solving Problems Related to Setting MCR Paths on
Mac or Linux
Use the following to solve common problems and issues:

I tried running SETENV on Mac and the command failed

If the setenv command fails with a message similar to setenv: command
not found or setenv: not found, you are not using a C Shell command
interpreter (such as csh or tcsh).

Set the environment variables using the export command using the format
export my_variable=my_value.

For example, to set DYLD_LIBRARY_PATH, run the following command:

export DYLD_LIBRARY_PATH = mcr_root/v711/runtime/maci64:mcr_root/
...

My Mac application fails with “Library not loaded” or “Image not
found” even though my EVs are set

If you set your environment variables, you may still receive the following
message when you run your application:

imac-joe-user:~ joeuser$ /Users/joeuser/Documents/MATLAB/Dip/Dip ; exit;
dyld: Library not loaded: @loader_path/libmwmclmcrrt.7.11.dylib
Referenced from: /Users/joeuser/Documents/MATLAB/Dip/Dip
Reason: image not found
Trace/BPT trap
logout

You may have set your environment variables initially, but they were not set
up as persistent variables. Do the following:

A-12

Set MCR Paths on Mac or Linux® with Scripts

1 In your home directory, open a file such as .bashrc or .profile file in
your log-in shell.

2 In either of these types of log-in shell files, add commands to set
your environment variables so that they persist. For example, to set
DYLD_LIBRARY_PATH in this manner, you enter the following in your file:

Setting PATH for MCR

DYLD_LIBRARY_PATH=/Users/joeuser/Desktop/mcr/v711/runtime/maci64:
/Users/joeuser/Desktop/mcr/v711/sys/os/maci64:/Users/joeuser/Desktop/
mcr//v711/bin/maci64
export DYLD_LIBRARY_PATH

?

Note The DYLD_LIBRARY_PATH= statement is one statement that must
be entered as a single line. The statement is shown on different lines, in
this example, for readability only.

A-13

	toc
	Getting Started
	MATLAB Builder JA Product Description
	Key Features

	Appropriate Tasks for MATLAB Compiler and Builder Products
	Roles in the Java Application Deployment Process
	Configure Your Environment
	Install the Required JDK
	Set JAVA_HOME
	Set the CLASSPATH
	Configure the Native Library Path Variables

	Create a Java Package from MATLAB Code
	Integrate a Java Package into an Application

	Overview
	Product Overview
	How Does Java Package Deployment Work?
	Limitations of Support

	Application Deployment Products and the Compiler Apps
	What Is the Difference Between the Compiler Apps and the mcc Com
	How Does MATLAB Compiler Software Build My Application?
	Dependency Analysis Function
	MEX-Files, DLLs, or Shared Libraries
	Component Technology File (CTF Archive)
	Additional Details

	MATLAB Builder JA Prerequisites
	What You Need to Know
	Required Products
	Dependency and Non-Compilable Code Considerations

	Integrating a Generated Java Package into a Java Application
	Gathering Files Needed for Deployment
	Testing the Java Package in a Java Application
	Using mcrroot to Test Against the MCR

	Distributing MATLAB Code Using the MATLAB Compiler Runtime (MCR)
	Install MATLAB Compiler Runtime (MCR)
	MCR Prerequisites
	Add the MCR Installer to the Installer
	Install the MCR

	Integrating Java Classes Generated by MATLAB into a Java Applica
	Calling Class Methods from Java
	Handle Data Conversion as Needed
	How MATLAB Builder JA Handles Data

	Build and Test
	Running a 64-Bit Mac Application

	Next Steps

	MATLAB Code Guidelines
	Write Deployable MATLAB Code
	Compiled Applications Do Not Process MATLAB Files at Runtime
	Do Not Rely on Changing Directory or Path to Control the Executi
	Use ismcc and isdeployed Functions To Execute Deployment-Specifi
	Gradually Refactor Applications That Depend on Noncompilable Fun
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	Load MATLAB Libraries using loadlibrary
	Restrictions on Using MATLAB Function loadlibrary with MATLAB Co

	Use MATLAB Data Files (MAT Files) in Compiled Applications
	Explicitly Including MAT files Using the %#function Pragma
	Load and Save Functions
	Using Load/Save Functions to Process MATLAB Data for Deployed Ap

	MATLAB Objects

	Deploying Java Packages
	Compile a Java Package with the Library Compiler App
	Compile a Java Package from the Command Line
	Execute Compiler Projects with deploytool
	Compile a Java Package with mcc

	Map Functions to Java Class Methods
	Use the Library Compiler App to Map Functions to Java Classes
	Add a New Class to a Java Package
	Rename a Java Class
	Delete a Class from a Java Package
	Add a Method to a Java Class
	Delete a Method from a Java Class

	Use mcc to Map Functions to Java Classes

	Customizing a Compiler Project
	Customize the Installer
	Change the Application Icon
	Add Application Information
	Change the Splash Screen
	Change the Installation Path
	Change the Logo
	Edit the Installation Notes

	Manage Required Files in a Compiler Project
	Dependency Analysis
	Using the Compiler Apps
	Using mcc

	Specify Files to Install with the Application
	Manage Support Packages

	Programming
	How MATLAB Builder JA Interacts with the JVM
	About the MATLAB Builder JA API
	What Are MATLAB Generated Java Packages and When Should You Crea
	Understanding the MATLAB Builder JA API Data Conversion Classes
	Overview of Classes and Methods in the Data Conversion Class Hie
	Advantage of Using Data Conversion Classes

	Automatic Conversion to MATLAB Types
	Understanding Function Signatures Generated by the MATLAB Builde
	Understanding MATLAB Function Signatures
	Overloaded Methods in Java That Encapsulate MATLAB Code

	Adding Fields to Data Structures and Data Structure Arrays
	Returning Data from MATLAB to Java

	Importing Classes
	Creating an Instance of the Class
	What Is an Instance?
	Instantiate a Java Class
	myPrimes Function

	Passing Arguments to and from Java
	Format
	Manual Conversion of Data Types
	Using MWNumericArray

	Automatic Conversion to a MATLAB Type
	Automatic Data Conversion
	Passing a Java Double Object
	Passing an MWArray
	Calling MWArray Methods
	Changing the Default by Specifying the Type

	Specifying Optional Arguments
	Passing Variable Numbers of Inputs
	Passing a Variable Number of Outputs

	Handling Return Values
	Using Java Reflection
	Using MWArray Query
	Using toType Array Methods

	Passing Java Objects by Reference
	MATLAB Array
	Wrappering and Passing Java Objects to MATLAB Functions with MWJ
	Passing a Java Object into a MATLAB Builder JA Method
	Cloning an Object
	Passing a Date into a Method and Getting a Date from a Method
	Returning Java Objects Using unwrapJavaObjectRefs
	Optimization Example Using MWJavaObjectRef

	Handling Errors
	Error Overview
	Handling Checked Exceptions
	Handling an Exception in the Called Function
	Handling an Exception in the Calling Function

	Handling Unchecked Exceptions
	Catching General Exceptions
	Catching Multiple Exception Types

	Alternatives to Using of System.exit

	Managing MATLAB Resources
	Why MATLAB Resources Need to be Managed
	Creating MATLAB Objects
	Disposing of MATLAB Objects

	Improving Data Access Using the MCR User Data Interface and MATL
	Supply Run-Time Profile Information for Parallel Computing Toolb
	Step 1: Write Your Parallel Computing Toolbox Code
	Step 2: Set the Parallel Computing Toolbox Profile
	Step 3: Compile Your Function with the Library Compiler or the C
	Step 4: Write the Java Driver Application

	Dynamically Specifying Run-Time Options to the MCR
	What Run-Time Options Can You Specify?
	Setting and Retrieving MCR Option Values Using MWApplication
	Specifying Run-Time Options Using MWMCROption

	Sharing an MCR Instance in COM or Java Applications
	What Is a Singleton MCR?
	Advantages and Disadvantages of Using a Singleton
	When You Should Use a Singleton
	When You Might Avoid Using a Singleton

	Which Products Support Singleton MCR and How Do I Create a Singl

	Handling Data Conversion Between Java and MATLAB
	Overview
	Calling MWArray Methods
	Specifying the Type

	Creating Buffered Images from a MATLAB Array

	Setting Java Properties
	How to Set Java System Properties
	Ensure a Consistent GUI Appearance
	Setting DisableSetLookAndFeel

	Blocking Execution of a Console Application that Creates Figures
	waitForFigures Method
	Block Figure Window Display in a Console Application

	Ensuring Multi-Platform Portability
	CTF Archive Embedding and Extraction
	Overview
	Using MWComponentOptions Class to Indicate Extraction Options
	Selecting Options
	Setting Options

	Using Environment Variables to Indicate Extraction Options
	Overriding Default Behavior

	For More Information

	Learning About Java Classes and Methods by Exploring the Javadoc

	Sample Java Applications
	Plot
	Purpose
	Procedure
	createplot.java

	Spectral Analysis
	Purpose
	Procedure
	powerspect.java

	Matrix Math
	Purpose
	MATLAB Functions to Be Encapsulated
	cholesky.m
	ludecomp.m
	qrdecomp.m
	Understanding the getfactor Program
	Procedure
	Step-by-Step Procedure
	getfactor.java
	Output for the Matrix Math Example
	Output for a Sparse Matrix

	Phone Book
	Purpose
	Procedure
	getphone.java

	Optimization
	Purpose
	OptimDemo Package
	Procedure

	Web Application
	Overview
	Prerequisites
	Ensure You Have the Required Products
	Ensure Your Web Server Is Java Compliant
	Install the javabuilder.jar Library

	Locating the Example Files
	Contents of the Example Files

	Build Your Java Package
	Compiling Your Java Code
	Generating the Web Archive (WAR) File
	Running the Web Deployment Example
	Using the Web Application

	Deploying a Java Package Over the Web
	About the WebFigures Feature
	Supported Renderers for WebFigures

	Preparing to Implement WebFigures for MATLAB Builder JA
	Your Role in the WebFigure Deployment Process
	What You Need to Know to Implement WebFigures
	Required Products
	MATLAB Programmer
	Java Developer

	Assumptions About the Examples
	Set DISPLAY on UNIX Systems

	Implement a Custom WebFigure
	Overview
	Setting Up the Web Server
	Install and Configure Apache Tomcat
	Install javabuilder.jar
	Install the Web Archive (WAR)

	Create the Default WebFigure
	Behind the Scenes: How a WebFigure Is Referenced

	Interact with the Default WebFigure
	Create a Custom WebFigure

	Advanced Configuration of a WebFigure
	Overview
	How Do WebFigures Work?
	Installing WebFigureService
	Getting the WebFigure Object from Your Method
	Attach a WebFigure
	Attaching to the Session Cache
	Attaching to the Application Cache

	Using the WebFigure JSP Tag to Reference a WebFigure
	Initializing the JSP Tag
	Attributes of a WebFigure Tag

	Getting an Embeddable String That References a WebFigure Attache

	Working with MATLAB Figures and Images
	Your Role in Working with Figures and Images
	Create and Modify a MATLAB Figure
	Preparing a MATLAB Figure for Export
	Changing the Figure (Optional)
	Alter Visibility
	Change Background Color
	Alter Orientation and Size

	Exporting the Figure
	WebFigure
	Image Data

	Cleaning Up the Figure Window
	Modify and Export Figure Data
	WebFigure
	Image Data

	Working with MATLAB Figure and Image Data
	For More Comprehensive Examples
	Working with Figures
	Getting a Figure From a Deployed Component

	Working with Images
	Getting Encoded Image Bytes from an Image in a Component
	Java
	Getting a Buffered Image in a Component
	Java

	Creating Scalable Web Applications Using RMI
	Using Remote Method Invocation (RMI)
	RMI Prerequisites
	Run the Client and Server on a Single Machine
	Run the Client and Server on Separate Machines
	Use Native Java with Cell Arrays and Struct Arrays
	Why Use Native Type Cell Arrays and Struct Arrays?
	Using Native Types Does Not Require a Client-Side MCR

	Native Type Data Marshaling Prerequisites
	Native Java Cell and Struct
	Before You Run the Example
	Running the Example

	Additional RMI Examples

	Troubleshooting
	Common MATLAB Builder JA Error Messages
	Exception in thread "main" java.lang.UnsatisfiedLinkError: Faile
	Failed to find the library <library_name>, required by MATLAB Bu
	javac is not recognized as an internal or external command, oper

	Reference Information for Java
	Requirements for the MATLAB Builder JA Product
	System Requirements
	Path Modifications Required for Accessibility
	MATLAB Builder JA Limitations
	MATLAB Java External Interface
	MATLAB Objects

	Data Conversion Rules
	Java to MATLAB Conversion
	MATLAB to Java Conversion
	Unsupported MATLAB Array Types

	Programming Interfaces Generated by the MATLAB Builder JA Produc
	APIs Based on MATLAB Function Signatures
	Standard API
	mlx API
	Code Fragment: Signatures Generated for the myprimes Example

	MWArray Class Specification
	Deployment Product Terms

	Function Reference
	Using MATLAB Compiler on Mac or Linux
	Overview
	Installing MATLAB Compiler on Mac or Linux
	Installing MATLAB Compiler
	Custom Configuring Your Options File
	Install Apple Xcode from DVD on Maci64

	Writing Applications for Mac or Linux
	Objective-C/C++ Applications for Apple’s Cocoa API
	Where’s the Example Code?
	Preparing Your Apple Xcode Development Environment
	Build and Run the Sierpinski Application
	Running the Sierpinski Application

	Building Your Application on Mac or Linux
	Compiling Your Application with the Compiler Apps
	Compiling Your Application with the Command Line
	On Non-Mac i64 Platforms
	On Maci64

	Testing Your Application on Mac or Linux
	Set MCR Paths on Mac or Linux with Scripts
	Solving Problems Related to Setting MCR Paths on Mac or Linux
	I tried running SETENV on Mac and the command failed
	My Mac application fails with “Library not loaded” or “Image not

	tables
	MATLAB Compiler Task Matrix
	Java Application Deployment Roles
	Information on CTF Archive Embedding/Extraction and Component Ca
	Key Tasks
	Compiler Java Options
	Default Installation Paths
	Custom Installation Roots
	WebFigures for MATLAB Builder JA Deployment Roles, Responsibilit
	WebFigure Tag Attributes and Their Default Values
	MATLAB Programmer
	Front-End Web Developer
	Java to MATLAB Conversion Rules
	MATLAB to Java Conversion Rules

